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ABSTRACT 
 
This paper first introduces a generic methodology to perform sequential equivalence checking, 
using a property checker rather than a dedicated equivalence checking tool. Sequential 
equivalence checking itself has many useful applications in the development of an RTL design, 
e.g. binary/gray-code/one-hot recoding, pipeline retiming, and IP configuration checking. 
 
This paper goes on to describe a novel, yet elegantly simple, solution to a number of X issues in 
Verilog. The technique sounds like a waste of time: sequentially comparing a design with itself! 

However, outputs can be non-equivalent due to dangerous X’s lurking inside the design. This 
approach allows a design to be optimized (via synthesis don’t-cares and smaller non-reset flip-

flops) without compromising verification due to different semantic interpretations of X.
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1.0 Introduction 
A Sequential Comparison methodology has been developed at ARM, using assertions and a 
formal Property Checker rather than a dedicated Logical Equivalence Checking (LEC) tool like 
Formality or Conformal. The sequential comparison tells you which outputs are exhaustively 
proven to be equivalent for all possible input sequences. It also tells you which outputs differ, 
and for every non-equivalent output you get a debug sequence, from reset, in a VCD waveform.  
 
This technique has been successfully used to check RTL rewrites where equivalence is not 
combinatorial but is sequential, i.e. the designs have very different internal states but their 
outputs are identical in every clock cycle. In particular, it’s been applied to proving equivalence 
of IP configuration options in order to replace lots of repeated dynamic simulation. 
 
Traditional LEC tools are combinatorial in nature so cannot prove equivalence of designs that 
have significantly different internal states, and they will never give a debug sequence showing a 
difference (they can only give a single combinatorial state-vector to show a difference). 
However, the big advantage of Logical Equivalence Checkers is that they are very fast and 
should be used when the two designs have the same internal states. 
 
This paper first describes the sequential equivalence checking methodology using a property 
checker and assertions. It then goes on to describe a new and exciting use of this technique for X 
analysis. 
 
1.1 The Eureka Moment 

The second part of this paper describes a novel and innovative use of sequential equivalence 
checking that only came about by accident, when describing some built-in sanity checks to a 
colleague. ARM’s seq_compare script has some sanity checks to avoid inadvertently comparing 
the exact same design twice, either the exact same file location or two separate copies that unix 
diff shows are 100% identical. 
 
I explained to my colleague that these checks are needed to avoid mistakes that could go 
unnoticed, because such a comparison of the same design with itself must always be equivalent 
… or must it? Mid-sentence it occurred to me that a design can indeed be different to itself in a 
sequential comparison, but only if there are any X’s inside the design that can affect the output. 
Turns out that this is a good technique for analyzing whether X-assignments or X-storage in a 
design are safe. This check can only be done by sequential equivalence checking, and not by a 
Logical Equivalence Checker (at least in current tools). 
 
1.2 Terminology 

This paper uses terminology including: 
 

• LEC  Logical Equivalence Checking tools, such as Formality and Conformal 
• Assertion Statement about the design, that needs to be verified 
• Assumption Constraint on the design environment, that can be used by formal tools 
• Property Either an assertion or an assumption  
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1.3 Motivation 

ARM’s motivation for sequentially comparing a design with itself includes: 
 

1. Avoiding the dangers of X explained in references [Bening 99], [Foster 03], [Galbi 02] 
and [Turpin 03]. This is particularly important to an IP provider like ARM, where the 
RTL will be implemented several times using different synthesis flows. These references 
explain that X’s can cause differences between RTL simulation and real silicon, which 
are not picked up by design flows that rely on Logical Equivalence Checkers. 

 
2. Improving formal proof results of assertions, which can fail due to reachable X-

assignments (or X-storage) in the design. You have to ask the question: “If I can’t prove 
the design is equivalent to itself, what chance do I have to formally prove other 
assertions?” 

 
3. Two new ARM processors are currently under development, and will initially be used in 

two automotive applications (ABS: Anti-lock Braking System and ESP: Electronic 
Stability Program) that are safety critical. Each application will use two cores with a 
simple voting system that will fail-safe if the processors disagree, and reset the 
processors. ARM does not want these identical processors to disagree due to X-
assignments that are minimized differently or non-reset DFFs that power up as different 
values. 

 
This paper describes how sequential comparison of a design with itself improves upon the 
automatic formal proofs of reachable X-assignments, and non-reset DFFs, described in reference 
[Turpin 2003] - which argued that even a reachable X might be safe if it’s not read when it is at 
X. Such reachable-but-safe X’s are hard to check manually but can be found using this new 
technique. 
 
2.0 Logical Equivalence Checking (LEC) 
There are many commercially available Logical Equivalence Checking (LEC) tools, including: 
Cadence’s Conformal, Mentor’s Formal-Pro and Synopsys’ Formality. This section describes 
how they work, to give important background information for comparing and contrasting against 
sequential comparison described later in this document. 
 
All of these LEC tools use formal methods to exhaustively compare large designs very quickly 
e.g. 500k gate designs compared in 20 minutes. This speed is possible due to a divide-and-
conquer approach that performs lots of small combinatorial comparisons. 
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2.1 Matching and Comparing Logic Cones 

Figure 1 below illustrates a comparison between RTL and Netlist. 
 

Figure 1 – Combinatorial Comparison of Logic Cones 

 
When comparing two designs, like RTL and netlist in Figure 1 above, a Logical Equivalence 
Checker must match key points from 3 main groups: 
  

1. Primary Inputs 
2. Internal State (DFFs and DLATs) 
3. Primary Outputs 

 
The matching itself is performed initially by name (as this is quick) with optional wildcards, but 
then by signature analysis (of fan-in and fan-out). Once matched, a Logical Equivalence Checker 
compares all logic cones that fall in one of two groups: 
 

1. Output functions 
2. Next-state functions (e.g. driving d-input to a DFF) 

 
If all key points are match, and all logic cones are equivalent, then the designs are formally 
verified as being 100% equivalent. 
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2.2 Applications of Logical Equivalence Checking 

This section describes several applications of Logical Equivalence Checking. 
 
2.2.1 RTL vs. Netlist Comparisons 

This is the most popular application of Logical Equivalence Checking, for ensuring that 
synthesis or manual changes, have correctly implemented the RTL. It is far faster than 
comparing RTL simulation vs. Netlist simulation, and is an exhaustive verification method. 
 
2.2.2 RTL Verilog vs. RTL VHDL 

This is typically performed to check results from an automated HDL translator. 
 
2.2.3 Simple RTL Retiming 

One common RTL modification is to retime logic in a pipeline, to speed up the clock frequency 
of the design. This is illustrated in Figure 2 below, where the logic between stage 2 and stage 3 is 
far longer than anywhere else and contains all the critical paths of the design. The original RTL 
is modified by moving combinatorial logic between stages – leading to balanced logic cones 
with similar critical paths. 
 

Figure 2 – Simple Pipeline Retiming 

 
If the pipeline retiming is simple enough, it’s possible to check the modification with a Logical 
Equivalence Checking (LEC) tool. The simplest form of retimed logic is moving an inverter 
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LEC tool. 
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LEC tools can also be used to compare more complex retimed logic by turning the comparison 
into a combinatorial one, using either of the simple approaches below: 
 
1. Transparency: Each DFF is replaced by a wire 
2. Normalization:  DFF stages are pushed together, through the combinatorial logic 
 
The problem with the first approach is that you can get a false positive result i.e. two designs 
with different numbers of DFF stages can be declared to be equivalent. The second approach is 
better, as it will only succeed if the numbers of DFF stages are the same. Formality takes the 
second approach, and can also handle local feedback i.e. a DFF preceded by a multiplexer. See 
section 3.2.3 for more complex retiming that normally requires a sequential approach. 
 
3.0 Sequential Equivalence Checking 
Logical Equivalence Checking is fast because it compares logic cones, as illustrated by Figure 1. 
However, this approach means that a wide range of RTL modifications cannot be compared – 
where the structure of the internal states differs significantly. This section describes a 
methodology for performing Sequential Equivalence Checking. 
 
3.1 Methodology Developed at ARM 

The sequential comparison methodology developed at ARM takes two designs and then: 
 
1. Creates a test-bench that instantiates each design, connecting inputs and comparing outputs. 
2. Adds OVL assertions that all EQUIV_* Boolean outputs are always true. 
3. Runs through a formal-proof-sequence flow, also developed at ARM, which automatically 

proves or fails the assertions. 
 
Step 3 avoids false-negative proof issues, where a property is failed from an unreachable design 
state, by applying a sequence of different proofs with increasing probability of avoiding 
unreachable states (at the cost of increased run times). It produces a report of how many outputs 
have been exhaustively proven to be equivalent, and which outputs differ - giving an input 
sequence from reset that demonstrates the difference. See section 3.1.3 for more details. 
 
3.1.1 Basic Testbench 

Figure 3 below shows the basic structure of the testbench, which takes a black-box view of the 
designs being compared. This is different to a Logical Equivalence Checker, as illustrated in 
Figure 1, which needs to compare the internal state of each design. 
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Figure 3 - Testbench for Sequential Compare 
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increasing the proof effort (that controls how many exhaustive proof methods are tried in the 
sequence - the higher the effort, the more complex the proofs). 
 

Figure 4 – Basic Proof Sequence 
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Figure 5 - Testbench with Unmatched I/O 
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Figure 6 - FSM recoding that needs sequential comparison 
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IP configuration comparisons often require a sequential equivalence check, as illustrated in 
Figure 7 below. Some IP configuration comparisons can be done by LEC tools, or by a mixture 
of LEC and Sequential comparison (i.e. use Sequential to check outputs that LEC says are 
different). 
 

Figure 7 - Verifying IP Configurations 
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3.2.3 Complex Retiming 

If a retimed pipeline has feedback or forwarding paths, as illustrated in Figure 8 below, then 
Logical Equivalence Checkers cannot generally prove equivalence. One exception is that 
Formality can handle a tight local feedback with a DFF and a multiplexer directly feeding the Q 
output back to the D input.  
 

Figure 8 – Complex Pipeline Retiming 

Forwarding paths can be checked by LEC tools that simply replace DFFs by wires (see section 
2.2.3) but this approach can miss bugs (only shown by sequential analysis). 
 
3.3 Complexity of Sequential vs. Logical 

This section describes the different complexities of Logical Equivalence Checking and 
Sequential Comparison, and aims to help quantify the complexity of formal verification in 
general. 
 
3.3.1 Logical and Sequential Cones 

A combinatorial cone of logic is illustrated by Figure 9 below, which shows a request output 
called req. Fan-in to this cone can be design inputs and internal state (stored in DFFs) and 
complexity also depends upon the functionality of the signal itself (measured by the gate-count 
of its cone). A Logical Equivalence Checker has to consider 2I+S permutations to the fan-in of 
such a cone (where I is the number of inputs and S is the number of states). 
 
 

RTL1

stage 1

stage 2

stage 3

Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Feedback Path

Forwarding Path

RTL2

stage 1

stage 2

stage 3

Feedback Path

Forwarding Path

RTL1

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Inputs
Connected
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Outputs
Compared

XN
O

R
XN

O
R

XN
O

R
XN

O
R

Feedback PathFeedback Path

Forwarding PathForwarding Path

RTL2

stage 1

stage 2

stage 3

Feedback Path

Forwarding Path

RTL2

stage 1

stage 2

stage 3

RTL2

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Feedback PathFeedback Path

Forwarding PathForwarding Path



Solving Verilog X-issues by Sequentially Comparing a design with itself! 

SNUG Boston 2005  Version 1.4, 14th September 2005 14

Figure 9 – Logic Cone for req output 

 
A property can be represented by a sequential cone, as illustrated by Figure 10 below. For the 
property in Figure 10 there are 3 copies of the logic cone for the req output (for the 3 timesteps 
in the property). Inputs and internal states that fan-in to each cone can differ, which increases the 
complexity of the proof. Figure 10 is in fact a simplified view, as a sequential proof will also 
need to consider additional cones – those driving the state points. Complexity increases with the 
length of the property i.e. number of clock cycles, and in the proof method used e.g. prove_rst10 
will add at least another 10 cycles to the start of the property (more if the reset sequence needs a 
number of cycles to reset all possible DFFs). 
 

Figure 10 - Sequential Cone for the Property P: req ##1 ack |-> ##1 ~req 

 
Sequential proofs are much more complex than combinatorial proofs, as illustrated by Figure 9 
and Figure 10, and typically only applied at the block level. An amusing way to help remember 
this difference is: “A combinatorial proof only needs to consider cones but a sequential proof 
needs to consider the entire Christmas tree!” 
 
Sequential proofs can have even greater sequential depths than the property itself, e.g. an 
inductive step adds an extra cycle because it’s proving: P |-> ##1 P. 
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3.3.2 How Big is Exhaustive? 

The complexity of verification that formal methods can cope with is staggering, and this section 
aims to help the reader quantify this complexity. Consider simulating a typical CPU design: 
 

• 500k gates, 20k DFFs, 500 inputs 
• 70 billion simulation cycles, running on 200 linux boxes for a week 
• How big: 236 cycles 

 
Consider exhaustively verifying the entire design: 
 

• Input sequences: 2(inputs+state) = 220500 cycles 
• What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs) 
• How big: 220500 cycles (215000 combinations of X is not significant here!) 

 
That’s a big number! So big in fact that it’s hard to visualize unless given with some context: 
 

• Cycles to simulate the 500k design:  236 (70 billion simulation cycles) 
• Cycles to exhaustively verify 32-bit adder: 264 (18 billion billion) 
• Number of stars in universe:    270 (1021) 
• Number of atoms in the universe:  2260 (1078) 
• Possible X combinations in 500k design: 215000 (104515 x 3) 
• Cycles to exhaustively verify 500k design: 220500 (106171) 

 
So, to say that formal verification is astronomical would not be an exaggeration – it would in fact 
be an understatement. 
 
3.3.3 Increasing Capacity and Speed 

It is possible to increase the capacity and speed of sequential comparisons in a number of ways 
including: 
 

• Hierarchical Comparison: A divide-and-conquer approach where smaller blocks are 
verified before the modules that instance them. This is equally applicable to Logical 
Equivalence Checkers but is not usually required. 

 
• Hybrid Logical/Sequential: Two designs will typically differ sequentially by only a 

small amount – the majority of the comparison can be done combinatorially as per 
existing LEC tools. One approach would be to first try and logically compare matching 
DFFs and remove any that differ (leaving the others in the following sequential 
comparison. 

 
3.4 Commercial Tools 

As described above, some LEC tools (including Cadence Conformal and Synopsys Formality) 
provide some limited support for sequential changes to a design. Up until recently there were no 
commercial tools that explicitly offered full sequential equivalence checking, but such a tool is 
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now available from a company called Calypto. In addition to providing RTL vs. RTL 
comparisons, Calypto allows SystemC vs. RTL comparisons. 
 
Of course, it’s also possible to apply the sequential comparisons described in this paper on a 
number of commercially available property checkers including: 
 

• Averant’s Solidify 
• Cadence’s Static Verifier 
• Jasper Design Automation’s Jasper-Gold 
• Mentor’s 0-In Confirm 
• Synopsys’ Magellan 

 
4.0 Sequential Comparison for X-Analysis 
This section describes how sequential equivalence checking can be used to find out which X’s 
are dangerous. 
 
4.1 Problems with X 

There are different semantics of X, which can be described as follows: 
 

• Simulation semantics of X as “unknown”. Can give optimistic and pessimistic results. 
• Synthesis semantics of X as “don’t-care”, allowing it to be minimized. 
• 2-State Sequential semantics of X can be either 0 or 1 (modeled by some formal tools) 

 
The fact that there are different semantics compromises the results of RTL simulation and 
Logical Equivalence Checking, as described in reference [Turpin 2003] - which gave some 
automated property checking techniques for finding potentially dangerous X’s from two sources: 
 

• X-assignments that are reachable 
• X-storage in non-reset DFFs 
 

However, it’s not always clear if reachable X’s are dangerous. [Turpin 2003] argued that even a 
reachable X might be safe if it’s not read when it is at X (e.g. an X stored in a DFF is safe if it’s 
never read). Distinguishing reachable-but-safe X’s can be very difficult. 
 
4.2 2-State Sequential Semantics of X 

Formal tools do not have to adhere to the semantics of X in RTL Verilog, as described in [IEEE 
95], but can instead fail the verification by stressing the design with X=0 and X=1 settings for 
every X (a much better representation of any possible silicon).  Unlike Logical Equivalence 
Checkers, formal property checkers consider the sequential behavior of a design – allowing them 
to track possible values of X’s through internal registers. This is termed 2-State Sequential in 
this paper (and in [Turpin 2003]), but can also be thought of as the Silicon Semantics of X as it’s 
a better reflection of what Silicon would actually do (at least from a static viewpoint). 
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Strict 2-State Sequential semantics can be performed by many formal property checkers 
including those described in section 3.4 (although Synopsys’ Magellan also considers Unknown 
simulation semantics via VCS) 
 
A formal property checker that supports 2-State Sequential semantics is a powerful analysis tool 
for finding X-related problems in RTL, particularly if it has such checks in an automated form. 
Note that some property checkers may support 2-State Sequential but actually use Unknown or 
Don’t-Care semantics as default, which are faster but could miss X-related bugs. 
 
The rest of this section assumes that the property checker being used for sequential comparison 
is using 2-State Sequential semantics of X. 
 
4.3 Sequential Comparison of a Design with itself! 

There are some built-in sanity checks in ARM’s seq_compare script to avoid inadvertently 
comparing the exact same design twice, either the same file location or an exact copy. However, 
sequentially comparing a design with itself is not a waste of time as it can show a difference if: 
 

• An X-assignment can affect an output 
• An X stored in a non-reset DFF can affect an output 

 
Comparing a design with itself would pass in unix diff. It would also pass in a Logical 
Equivalence Checker which considers both 0 and 1 values of every X but, crucially, matches 
pairs of X’s in the two designs and ties them together. Note that Formality does not match pairs 
of X-assignments (it treats them as separate unknowns), but it does match DFFs (which can store 
Xs, e.g. on power-up). 
 
Comparing a design with itself would not necessarily pass in a sequential comparison as the 
DFFs (and X-assignments) are not matched and so the X can be 0 in one copy and 1 in the other. 
This approach is illustrated in Figure 11 below. The X’s themselves can be from X-assignments 
in the logic cones driving the DFF, or from X’s in non-reset DFFs (e.g. during reset). The formal 
property checker will try every combination of X, differently in each design copy, to show a 
non-equivalent output. 
 
Sequential equivalence checking provides a simple and elegant solution to finding dangerous 
X’s, as it can determine if potentially dangerous X’s can affect the block’s outputs. Conversely, 
it can be used to increase the number of non-dangerous X’s in order to produce an optimal 
design (X assignments for synthesis don’t-cares and smaller non-reset DFFs). 
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4.3.1 Usage 

ARM’s seq_compare script is run for X-analysis as follows: 
 
    seq_compare -x RTL1.v 
  
The -x flag will override the sanity-checks and do a formal comparison of RTL1 with itself. The 
formal property checker will try every combination of X differently in each design copy, to show 
a non-equivalent output. 
 

Figure 11 - Sequentially Comparing a Design with Itself for X-Analysis 

 
This comparison is illustrated in Figure 11above. As DFFs (and X-assignments) are not matched, 
a property checker is free to choose different values of X to fail an equivalent output assertion. 
 
4.3.2 Additional Bug Hunting 

If your comparison has a number of partial proofs, e.g. proven for 50 cycles from reset but no 
further (due to timeouts) then you can try bug-hunting by setting all X-assignments to 0 (and 
resetting all non-reset DFFs to 0) in one copy and to 1 in the other. A pass on such a mapping is 
non-exhaustive, but a failure is real. 
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4.4 Debugging Non-Equivalent Outputs 

This section describes some techniques to debug non-equivalent outputs for a sequential 
comparison of a design with itself. 
 
4.4.1 Identifying Reachable and Deadcode X-assignments 

[Turpin 2003] describes some automated property checking techniques that tell you which X’s 
are deadcode (i.e. unreachable) and which are reachable. Any X-assignments reported as 
deadcode can be left in the design (to improve minimization during synthesis). Any X-
assignments that are reported as reachable are potential reasons why the design is not equivalent 
to itself – removing them could make more outputs equivalent. 
 
4.4.2 Identifying Reset and Non-Reset DFFs 

[Turpin 2003] describes an automated property checking technique that tells you which DFFs are 
not reset – each one a potential source of a dangerous X. Recently this has been improved by a 
new technique that provides information about: 
 

1. Which DFFs are not reset (potential source of X). 
2. Which DFFs are reset to 1 (as opposed to 0). Can indicate bugs or one-hot vectors. 
3. Which DFFs are directly reset, asynchronously or synchronously. 
4. Which DFFs are subsequently reset, due to pipelining from directly reset DFFs. 
5. How long the reset should be applied to get all possible resets. 

 
Point 4 above is particularly interesting as it avoids adding reset lines to DFFs that are reset as 
part of a pipeline from directly reset DFFs. You just need to ensure that the reset is asserted for 
enough cycles to reset all possible DFFs (see point 5 above). 
 
Achieving points 4 and 5 above requires an iterative proof sequence, which can be 
computationally expensive as all non-reset DFFs will be tried as the reset depth increases. To 
improve efficiency, vector-wide reset proofs are performed as described in Table 1 below (for 
asynchronous resets). Half of the proof results in Table 1, the None and All results, are 
conclusive for all bits in the vector and proofs for individual DFFs are only required for the 
Some results. Using vector-wide reset proofs means that large non-reset datapath registers don’t 
take long to prove. Another efficiency is that at the start of each reset depth (required for point 5 
above) a vector is created for all remaining DFFs, so on the last step only two proofs are 
performed (showing that no remaining DFFs can be reset-to-0 or reset-to-1). 
 

Asynchronous Reset Assertion (in SVA) Proven Failed 
~reset_n |-> &(dffs[31:0]) == 1’b0; Some reset-to-0 None reset-to-0 
~reset_n |-> &(dffs[31:0]) == 1’b1; All  reset-to-1 Some reset-to-0, or 

Some still-at-X 
~reset_n |-> |(dffs[31:0]) == 1'b0; All  reset-to-0 Some reset-to-1, or 

Some still-at-X 
~reset_n |-> |(dffs[31:0]) == 1'b1; Some reset-to-1 None reset-to-1 

Table 1 Vector Wide Proofs 
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4.4.3 Examining Fan-in that drives the Cone 

Given a non-equivalent output, you can examine the fan-in (inputs and state) that drives its cone 
of logic – to see which X-assignments and/or non-reset DFFs can affect the cone. The user can 
then experiment with removing such X’s and re-running equivalence. 
 
4.4.4 Modified Comparison 

Given a data output, e.g. of 64-bits wide, it may be that X’s can occur on this output for certain 
clock cycles but should not be X when a valid signal is high. The OVL assertions for comparison 
can be modified to factor in this enabling term e.g. using assert_implication. 
 
4.4.5 Matching DFFs for Software Initialization 

It might sometimes be necessary to match a small number of non-reset DFFs in order to avoid 
failures due to X in the hardware that are prevented by software. Consider the register bank of a 
processor, which is not reset as they are datapath registers (so power up with X’s stored in them). 
If any instruction was allowed after power up, then a load from a register could be performed 
before it has been initialized – causing a difference when comparing the design with itself. 
Matching such DFFs is better than forcing them to be reset as it allows all permutations of X to 
be checked, with a constraint that they will be the same in both copies of the design being 
compared. 
 
5.0 Conclusions and Future Directions 
This paper has described how a property checker can be used to perform sequential comparisons. 
It has also given some useful applications of this technique, which cannot be compared using 
traditional Logical Equivalency Checkers. 
 
This paper has also described a novel solution to the problem of dangerous X semantics, by 
sequentially comparing a design with itself! This technique is an improvement to the approaches 
described in [Turpin 2003]. It enables designs to be efficiently implemented, with smaller non-
reset DFFs or X-assignments used to improve minimization during synthesis, without 
compromising safety. It can also improve the results of formal property checking in general, 
which can fail due to X’s in a design. 
 
ARM will continue to use these techniques in its IP, and develop this methodology further 
(maybe a hybrid solution of Sequential and Combinatorial comparisons) until they become 
widely available in EDA tools. 
 
6.0 Acknowledgements 
I would like to thank Mike Bartley, from the SNUG Technical Committee, for doing a great job 
of reviewing this paper. From Synopsys I’d like to thank Lisa McIlwain and Phil Moorby for 
their comments on this paper, and Dan Benua and Alessandro Fasan for their comments on this 
technique. I’d also like to thank Jeremy Sonander from Saros Technology, along with Ramin 
Hojati and Adrian Isles from Averant, for their support in implementing the techniques described 



Solving Verilog X-issues by Sequentially Comparing a design with itself! 

SNUG Boston 2005  Version 1.4, 14th September 2005 21

in this paper. I’d also like to thank several colleagues at ARM for giving feedback on this 
technique, in particular Simon Craske and Samin Ishtiaq. 
 
7.0 References 
[Bening 99] "A Two-State Methodology for RTL Logic Simulation", Lionel Bening, DAC 

1999 
[Foster 03] “Semantic Inconsistency and its effect on simulation”, Harry Foster, IEE 

Electronics Systems and Software, April/May 2003 
[Galbi 02] “RTL X’s – A Treasure Trove of Trouble”, Duane Galbi & Lok Kee Ting, Boston 

SNUG 2002 
[IEEE 95] “IEEE Standard Hardware Description Language Based on the Verilog Hardware 

Description Language”, IEEE Computer Society, IEEE Std 1364-1995 

[Turpin 03] “The Dangers of Living with an X (bugs hidden in your Verilog)”, Mike Turpin, 
Boston SNUG 2003 


