

Solving Verilog X-Issues by Sequentially Comparing a
Design with itself.

You’ll never trust unix diff again!

Mike Turpin

ARM Ltd, Cambridge, UK

Mike.Turpin@arm.com

ABSTRACT

This paper first introduces a generic methodology to perform sequential equivalence checking,
using a property checker rather than a dedicated equivalence checking tool. Sequential
equivalence checking itself has many useful applications in the development of an RTL design,
e.g. binary/gray-code/one-hot recoding, pipeline retiming, and IP configuration checking.

This paper goes on to describe a novel, yet elegantly simple, solution to a number of X issues in
Verilog. The technique sounds like a waste of time: sequentially comparing a design with itself!

However, outputs can be non-equivalent due to dangerous X’s lurking inside the design. This
approach allows a design to be optimized (via synthesis don’t-cares and smaller non-reset flip-

flops) without compromising verification due to different semantic interpretations of X.

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 2

Table of Contents

1.0 Introduction... 3
1.1 The Eureka Moment ... 3
1.2 Terminology.. 3
1.3 Motivation... 4

2.0 Logical Equivalence Checking (LEC).. 4
2.1 Matching and Comparing Logic Cones .. 5
2.2 Applications of Logical Equivalence Checking ... 6

3.0 Sequential Equivalence Checking .. 7
3.1 Methodology Developed at ARM... 7
3.2 Applications for Sequential Comparison.. 10
3.3 Complexity of Sequential vs. Logical... 13
3.4 Commercial Tools... 15

4.0 Sequential Comparison for X-Analysis .. 16
4.1 Problems with X ... 16
4.2 2-State Sequential Semantics of X.. 16
4.3 Sequential Comparison of a Design with itself! ... 17
4.4 Debugging Non-Equivalent Outputs .. 19

5.0 Conclusions and Future Directions... 20
6.0 Acknowledgements... 20
7.0 References... 21

Table of Figures

Figure 1 – Combinatorial Comparison of Logic Cones.. 5
Figure 2 – Simple Pipeline Retiming.. 6
Figure 3 - Testbench for Sequential Compare .. 8
Figure 4 – Basic Proof Sequence .. 9
Figure 5 - Testbench with Unmatched I/O ... 10
Figure 6 - FSM recoding that needs sequential comparison... 11
Figure 7 - Verifying IP Configurations... 12
Figure 8 – Complex Pipeline Retiming .. 13
Figure 9 – Logic Cone for req output ... 14
Figure 10 - Sequential Cone for the Property P: req ##1 ack |-> ##1 ~req 14
Figure 11 - Sequentially Comparing a Design with Itself for X-Analysis 18

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 3

1.0 Introduction
A Sequential Comparison methodology has been developed at ARM, using assertions and a
formal Property Checker rather than a dedicated Logical Equivalence Checking (LEC) tool like
Formality or Conformal. The sequential comparison tells you which outputs are exhaustively
proven to be equivalent for all possible input sequences. It also tells you which outputs differ,
and for every non-equivalent output you get a debug sequence, from reset, in a VCD waveform.

This technique has been successfully used to check RTL rewrites where equivalence is not
combinatorial but is sequential, i.e. the designs have very different internal states but their
outputs are identical in every clock cycle. In particular, it’s been applied to proving equivalence
of IP configuration options in order to replace lots of repeated dynamic simulation.

Traditional LEC tools are combinatorial in nature so cannot prove equivalence of designs that
have significantly different internal states, and they will never give a debug sequence showing a
difference (they can only give a single combinatorial state-vector to show a difference).
However, the big advantage of Logical Equivalence Checkers is that they are very fast and
should be used when the two designs have the same internal states.

This paper first describes the sequential equivalence checking methodology using a property
checker and assertions. It then goes on to describe a new and exciting use of this technique for X
analysis.

1.1 The Eureka Moment

The second part of this paper describes a novel and innovative use of sequential equivalence
checking that only came about by accident, when describing some built-in sanity checks to a
colleague. ARM’s seq_compare script has some sanity checks to avoid inadvertently comparing
the exact same design twice, either the exact same file location or two separate copies that unix
diff shows are 100% identical.

I explained to my colleague that these checks are needed to avoid mistakes that could go
unnoticed, because such a comparison of the same design with itself must always be equivalent
… or must it? Mid-sentence it occurred to me that a design can indeed be different to itself in a
sequential comparison, but only if there are any X’s inside the design that can affect the output.
Turns out that this is a good technique for analyzing whether X-assignments or X-storage in a
design are safe. This check can only be done by sequential equivalence checking, and not by a
Logical Equivalence Checker (at least in current tools).

1.2 Terminology

This paper uses terminology including:

• LEC Logical Equivalence Checking tools, such as Formality and Conformal
• Assertion Statement about the design, that needs to be verified
• Assumption Constraint on the design environment, that can be used by formal tools
• Property Either an assertion or an assumption

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 4

1.3 Motivation

ARM’s motivation for sequentially comparing a design with itself includes:

1. Avoiding the dangers of X explained in references [Bening 99], [Foster 03], [Galbi 02]
and [Turpin 03]. This is particularly important to an IP provider like ARM, where the
RTL will be implemented several times using different synthesis flows. These references
explain that X’s can cause differences between RTL simulation and real silicon, which
are not picked up by design flows that rely on Logical Equivalence Checkers.

2. Improving formal proof results of assertions, which can fail due to reachable X-

assignments (or X-storage) in the design. You have to ask the question: “If I can’t prove
the design is equivalent to itself, what chance do I have to formally prove other
assertions?”

3. Two new ARM processors are currently under development, and will initially be used in

two automotive applications (ABS: Anti-lock Braking System and ESP: Electronic
Stability Program) that are safety critical. Each application will use two cores with a
simple voting system that will fail-safe if the processors disagree, and reset the
processors. ARM does not want these identical processors to disagree due to X-
assignments that are minimized differently or non-reset DFFs that power up as different
values.

This paper describes how sequential comparison of a design with itself improves upon the
automatic formal proofs of reachable X-assignments, and non-reset DFFs, described in reference
[Turpin 2003] - which argued that even a reachable X might be safe if it’s not read when it is at
X. Such reachable-but-safe X’s are hard to check manually but can be found using this new
technique.

2.0 Logical Equivalence Checking (LEC)
There are many commercially available Logical Equivalence Checking (LEC) tools, including:
Cadence’s Conformal, Mentor’s Formal-Pro and Synopsys’ Formality. This section describes
how they work, to give important background information for comparing and contrasting against
sequential comparison described later in this document.

All of these LEC tools use formal methods to exhaustively compare large designs very quickly
e.g. 500k gate designs compared in 20 minutes. This speed is possible due to a divide-and-
conquer approach that performs lots of small combinatorial comparisons.

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 5

2.1 Matching and Comparing Logic Cones

Figure 1 below illustrates a comparison between RTL and Netlist.

Figure 1 – Combinatorial Comparison of Logic Cones

When comparing two designs, like RTL and netlist in Figure 1 above, a Logical Equivalence
Checker must match key points from 3 main groups:

1. Primary Inputs
2. Internal State (DFFs and DLATs)
3. Primary Outputs

The matching itself is performed initially by name (as this is quick) with optional wildcards, but
then by signature analysis (of fan-in and fan-out). Once matched, a Logical Equivalence Checker
compares all logic cones that fall in one of two groups:

1. Output functions
2. Next-state functions (e.g. driving d-input to a DFF)

If all key points are match, and all logic cones are equivalent, then the designs are formally
verified as being 100% equivalent.

i1

i2
.
.
.

.

.

.

DFF

DFF

n23

n42

q1_reg

q2_reg

o1

o2

Netlist

o/p

o/p

n/s

n/s .
.
.

i1

i2

o1

o2

d1

.

.

.

.

.

.

.

.

.

DFF

DFFd2

RTL
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

q1

q2

DFFs
Connected

n/s

n/s

o/p

o/p

XN
O

R
XN

O
R Next States

Compared

i1

i2
.
.
.

.

.

.

DFF

DFF

n23

n42

q1_reg

q2_reg

o1

o2

Netlist

o/p

o/p

n/s

n/s .
.
.

i1

i2
.
.
.

.

.

.

DFFDFF

DFFDFF

n23

n42

q1_reg

q2_reg

o1

o2

Netlist

o/p

o/p

o/po/p

o/po/p

n/s

n/s

n/sn/s

n/sn/s .
.
.

i1

i2

o1

o2

d1

.

.

.

.

.

.

.

.

.

DFFDFF

DFFDFFd2

RTL
Inputs
Connected
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Outputs
Compared

XN
O

R
XN

O
R

XN
O

R
XN

O
R

XN
O

R
XN

O
R

q1

q2

DFFs
Connected
DFFs
Connected

n/s

n/s

n/sn/s

n/sn/s

o/p

o/p

o/po/p

o/po/p

XN
O

R
XN

O
R

XN
O

R
XN

O
R Next States

Compared

XN
O

R
XN

O
R

XN
O

R Next States
Compared

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 6

2.2 Applications of Logical Equivalence Checking

This section describes several applications of Logical Equivalence Checking.

2.2.1 RTL vs. Netlist Comparisons

This is the most popular application of Logical Equivalence Checking, for ensuring that
synthesis or manual changes, have correctly implemented the RTL. It is far faster than
comparing RTL simulation vs. Netlist simulation, and is an exhaustive verification method.

2.2.2 RTL Verilog vs. RTL VHDL

This is typically performed to check results from an automated HDL translator.

2.2.3 Simple RTL Retiming

One common RTL modification is to retime logic in a pipeline, to speed up the clock frequency
of the design. This is illustrated in Figure 2 below, where the logic between stage 2 and stage 3 is
far longer than anywhere else and contains all the critical paths of the design. The original RTL
is modified by moving combinatorial logic between stages – leading to balanced logic cones
with similar critical paths.

Figure 2 – Simple Pipeline Retiming

If the pipeline retiming is simple enough, it’s possible to check the modification with a Logical
Equivalence Checking (LEC) tool. The simplest form of retimed logic is moving an inverter
from one stage to another, which only requires the affected DFFs to be matched inverted by the
LEC tool.

RTL2 (modified)

stage 1

stage 2

stage 3

Balanced Timing Paths

RTL1 (original)

stage 1

stage 2

stage 3

Critical Timing Path

Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

RTL2 (modified)

stage 1

stage 2

stage 3

RTL2 (modified)

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Balanced Timing Paths

RTL1 (original)

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Critical Timing PathCritical Timing Path

Inputs
Connected
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Outputs
Compared

XN
O

R
XN

O
R

XN
O

R
XN

O
R

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 7

LEC tools can also be used to compare more complex retimed logic by turning the comparison
into a combinatorial one, using either of the simple approaches below:

1. Transparency: Each DFF is replaced by a wire
2. Normalization: DFF stages are pushed together, through the combinatorial logic

The problem with the first approach is that you can get a false positive result i.e. two designs
with different numbers of DFF stages can be declared to be equivalent. The second approach is
better, as it will only succeed if the numbers of DFF stages are the same. Formality takes the
second approach, and can also handle local feedback i.e. a DFF preceded by a multiplexer. See
section 3.2.3 for more complex retiming that normally requires a sequential approach.

3.0 Sequential Equivalence Checking
Logical Equivalence Checking is fast because it compares logic cones, as illustrated by Figure 1.
However, this approach means that a wide range of RTL modifications cannot be compared –
where the structure of the internal states differs significantly. This section describes a
methodology for performing Sequential Equivalence Checking.

3.1 Methodology Developed at ARM

The sequential comparison methodology developed at ARM takes two designs and then:

1. Creates a test-bench that instantiates each design, connecting inputs and comparing outputs.
2. Adds OVL assertions that all EQUIV_* Boolean outputs are always true.
3. Runs through a formal-proof-sequence flow, also developed at ARM, which automatically

proves or fails the assertions.

Step 3 avoids false-negative proof issues, where a property is failed from an unreachable design
state, by applying a sequence of different proofs with increasing probability of avoiding
unreachable states (at the cost of increased run times). It produces a report of how many outputs
have been exhaustively proven to be equivalent, and which outputs differ - giving an input
sequence from reset that demonstrates the difference. See section 3.1.3 for more details.

3.1.1 Basic Testbench

Figure 3 below shows the basic structure of the testbench, which takes a black-box view of the
designs being compared. This is different to a Logical Equivalence Checker, as illustrated in
Figure 1, which needs to compare the internal state of each design.

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 8

Figure 3 - Testbench for Sequential Compare

This basic testbench is created with a simple script, which can be invoked as follows:

seq_compare RTL1.v RTL2.v

By default, no formal proofs are run. Instead, the testbench is created and some setup files are
created for RTL compilation and formal proofs (which can be modified as appropriate). This
two-step approach also allows the OVL assertions themselves to be modified if required, or input
assumptions to be added.

3.1.2 Assertions to Prove Equivalence

The testbench of Figure 3 is ideal for property checking, as it’s now a single design with a set of
assertions to prove that all outputs are equivalent under all input sequences. It’s also possible to
add extra OVL assertions that constrain the input sequences, to prove that all outputs are
equivalent under all legal input sequences. ARM has also developed methodology to extract and
formally verify OVL assertions, which is also used for the sequential comparison methodology.

3.1.3 Formal Proof Sequence

All of the assertions are pushed through an automated sequence of proofs, a simplified version of
which is illustrated in Figure 4. This approach avoids false negative issues (failure from an
unreachable design state) and tries to maximize the number of exhaustive proofs.

It will only report a failing assertion if the failure is from reset – in which case it shows a debug
sequence (dumped as a VCD file). Assertions that are neither proven exhaustively, nor fail from
reset, are classed as partial proofs - which can often be turned into exhaustive proofs by

RTL1
(original)

RTL2
(modified)

Inputs
Connected

Outputs
Compared

XN
O

R

`ifdef ASSERT_ON
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o2 == 1’b1));
…

`endif

OVL Assertions
Feed

Testbench
into

Property
Checker

DFFs are NOT
Connected or Compared

RTL1
(original)

RTL2
(modified)

Inputs
Connected

Inputs
Connected

Outputs
Compared

XN
O

R

Outputs
Compared

XN
O

R
XN

O
R

`ifdef ASSERT_ON
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o2 == 1’b1));
…

`endif

OVL Assertions
`ifdef ASSERT_ON

assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o2 == 1’b1));
…

`endif

OVL Assertions
Feed

Testbench
into

Property
Checker

Feed
Testbench

into
Property
Checker

DFFs are NOT
Connected or Compared

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 9

increasing the proof effort (that controls how many exhaustive proof methods are tried in the
sequence - the higher the effort, the more complex the proofs).

Figure 4 – Basic Proof Sequence

The square boxes on the left column of Figure 4 show examples of the proof methods used, e.g.
“induct” is an exhaustive proof that uses mathematical induction and “prove_rst250” is a finite
proof that holds for any input sequence within 250 cycles after reset. The arrows indicate proof
results, with many results leading to the next proof method in the sequence and only conclusive
results being logged as a final proof result.

For debug, traditional LEC tools produce schematics or fan-in vectors (possibly showing
unreachable values). In the case of sequential comparison, a failing assertion indicates a
difference between two corresponding outputs which can be debugged via the VCD trace.

3.1.4 Testbench for Designs with Differing I/O

Figure 5 below shows how designs with different numbers of inputs and outputs are compared.
The first design (RTL1) is considered as the original design, a golden reference model against
which all changes are compared. Consequently, all I/O from RTL1 will be I/O for the testbench
(with extra outputs XNOR’d with Z, which will always fail as Z can also be set to either 0 or 1).

Fail

prove_rst250Pass
Pass Partial

Proofs

!prove_rstNFail
prove_rst1

prove_rst250

Proof Methods Final Results

prove_rstN-5Abort

Block-Level
Failures
(from reset)

VCD

Assertions

ExhaustivePass

ExhaustivePass
Fail Exhaustive

Proofs

prove

induct

a1
a2 a3

a4a5 a6
a9 a8a7

FailFail

prove_rst250Pass prove_rst250Pass
PassPass Partial

Proofs
Partial
Proofs

!prove_rstNFail !prove_rstNFail
prove_rst1

prove_rst250

Proof Methods Final Results

prove_rstN-5Abort prove_rstN-5Abort

Block-Level
Failures
(from reset)

VCDBlock-Level
Failures
(from reset)

VCDBlock-Level
Failures
(from reset)

VCD

Assertions

ExhaustivePass ExhaustivePass

ExhaustivePass ExhaustivePass
FailFail Exhaustive

Proofs
Exhaustive
Proofs

prove

induct

a1
a2 a3

a4a5 a6
a9 a8a7

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 10

Figure 5 - Testbench with Unmatched I/O

Any additional RTL1 inputs can be constrained by additional OVL assertions configured as
assumptions for formal proofs (by setting their options parameter to 1).

3.2 Applications for Sequential Comparison

This section describes several applications for sequential comparison.

3.2.1 State Machine Encodings

Logical Equivalence Checkers can handle some simple state machine recodings, but only if the
number of states are identical in the two designs (in which case the LEC tool can match state bits
in different ways, perhaps with some matched inverted).

Formality can handle some comparisons where the number of state bits have changed, e.g. a
binary FSM rewritten to be one-hot encoded. However, no LEC tool can prove equivalence of
two designs where the numbers of states differ, e.g. binary FSM rewritten to be gray-coded.

Figure 6 below shows a state machine recoding where two of the states have been expanded in
order to achieve gray-coding.

RTL1
(original)

RTL2
(modified)

Inputs
Connected

Outputs
Compared

XN
O

R

`ifdef ASSERT_ON
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
…
assert_never #(`ASSUME) (…, .test_expr(mpu_enable));

`endif

OVL Assertions

Extra
Inputs

(RTL1 only)
// OVL: assume?

Extra Inputs
(RTL2 only)

undriven

Extra Outputs
(RTL2 only)

not compared

Extra
Outputs

(RTL1 only)

undriven

XN
O

RRTL1
(original)

RTL2
(modified)

Inputs
Connected

Outputs
Compared

XN
O

R

`ifdef ASSERT_ON
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
…
assert_never #(`ASSUME) (…, .test_expr(mpu_enable));

`endif

OVL Assertions

RTL1
(original)

RTL2
(modified)

Inputs
Connected

Inputs
Connected

Outputs
Compared

XN
O

R

Outputs
Compared

XN
O

R
XN

O
R

`ifdef ASSERT_ON
assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
…
assert_never #(`ASSUME) (…, .test_expr(mpu_enable));

`endif

OVL Assertions
`ifdef ASSERT_ON

assert_always #(`ASSERT) (…, .test_expr(EQUIV_o1 == 1’b1));
…
assert_never #(`ASSUME) (…, .test_expr(mpu_enable));

`endif

OVL Assertions

Extra
Inputs

(RTL1 only)
// OVL: assume?

Extra
Inputs

(RTL1 only)
// OVL: assume?

Extra Inputs
(RTL2 only)

undriven

Extra Inputs
(RTL2 only)

undriven

Extra Outputs
(RTL2 only)

not compared

Extra Outputs
(RTL2 only)

not compared

Extra
Outputs

(RTL1 only)

undriven

XN
O

R Extra
Outputs

(RTL1 only)

undriven

XN
O

R
XN

O
R

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 11

Figure 6 - FSM recoding that needs sequential comparison

LEC tools might be able to match the 3 state bits in each state machine of Figure 6, but will show
combinatorial differences as the second design contains two additional states.

A sequential comparison can show equivalence if all outputs sequences are the same (for all
possible input sequences). If the binary encoded FSM in Figure 6 had been recoded as a one-hot
FSM, LEC tools wouldn’t even have been able to match all DFFs (3-bits in the binary version
vs. 6-bits in the one-hot version).

3.2.2 Checking Configurable IP

The sequential comparison methodology described in this paper was originally created at ARM
for checking configurable IP, and has found a number of differences during the development
phases of several designs. ARM processors have several configuration options, including Cache
size (or Cache-less), TCM (Tightly Coupled Memory) size, number of breakpoints and
watchpoints, inclusion of DMA (Direct Memory Access), inclusion of an MPU (Memory
Protection Unit). For every option, the amount of dynamic verification could be doubled – which
rapidly becomes a big overhead. Instead, formal verification can be used to efficiently replace
billions of simulation cycles.

Consider the option of including an MPU. If no MPU is included in a particular implementation,
then a default “empty” MPU is put in place which has a small amount of internal state to give
appropriate empty-MPU behaviour. For a design with an MPU included, there will also be an
enable input to dynamically switch between MPU-on and MPU-off. The behaviour of an empty-
MPU is usually the same as MPU-off, so an equivalence check can be performed with the design
containing the MPU having an extra input assumption that the MPU enable input is low (off).

TxParity
011

TxEOW
100

TxEOM
101

TxData
010

Idle
000

BusReq
001

count=3

count=2

co
un

t=2

TxParity
111

TxEOW1
011

TxEOM1
110

TxData
101

Idle
000

BusReq
100

count=3

Gray Coded Version

co
un

t=
1

TxEOW2
001

co
un

t=
1

TxEOM2
010

Binary Encoded FSM

TxParity
011

TxEOW
100

TxEOM
101

TxData
010

Idle
000

BusReq
001

count=3

count=2

co
un

t=2

TxParity
111

TxEOW1
011

TxEOM1
110

TxData
101

Idle
000

BusReq
100

count=3

Gray Coded Version

TxParity
111

TxEOW1
011

TxEOM1
110

TxData
101

Idle
000

BusReq
100

count=3

Gray Coded Version

co
un

t=
1

TxEOW2
001

co
un

t=
1

TxEOW2
001

co
un

t=
1

TxEOM2
010

co
un

t=
1

TxEOM2
010

Binary Encoded FSM

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 12

IP configuration comparisons often require a sequential equivalence check, as illustrated in
Figure 7 below. Some IP configuration comparisons can be done by LEC tools, or by a mixture
of LEC and Sequential comparison (i.e. use Sequential to check outputs that LEC says are
different).

Figure 7 - Verifying IP Configurations

Even if all DFFs are equivalent in LEC, a Sequential comparison can sometimes show more
differences than LEC in the Outputs. These extra non-equivalent outputs are due to dangerous
Xs in the design (explained in section 4.0).

Common
Inputs All Outputs

ComparedXN
O

R
XN

O
R

RTL1 (`undef MPU_ON)
state

n/s

RTL1 (`define MPU_ON)

state

n/s o/p

MPU-Empty Configuration

Extra Input
mpu_enable

assert_never #(0,1) (…, mpu_enable);

Common
Inputs All Outputs

ComparedXN
O

R
XN

O
R

XN
O

R
XN

O
R

RTL1 (`undef MPU_ON)
state
state

n/sn/s

RTL1 (`define MPU_ON)

state
state

n/sn/sn/s o/po/po/p

MPU-Empty Configuration

Extra Input
mpu_enable

assert_never #(0,1) (…, mpu_enable);

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 13

3.2.3 Complex Retiming

If a retimed pipeline has feedback or forwarding paths, as illustrated in Figure 8 below, then
Logical Equivalence Checkers cannot generally prove equivalence. One exception is that
Formality can handle a tight local feedback with a DFF and a multiplexer directly feeding the Q
output back to the D input.

Figure 8 – Complex Pipeline Retiming

Forwarding paths can be checked by LEC tools that simply replace DFFs by wires (see section
2.2.3) but this approach can miss bugs (only shown by sequential analysis).

3.3 Complexity of Sequential vs. Logical

This section describes the different complexities of Logical Equivalence Checking and
Sequential Comparison, and aims to help quantify the complexity of formal verification in
general.

3.3.1 Logical and Sequential Cones

A combinatorial cone of logic is illustrated by Figure 9 below, which shows a request output
called req. Fan-in to this cone can be design inputs and internal state (stored in DFFs) and
complexity also depends upon the functionality of the signal itself (measured by the gate-count
of its cone). A Logical Equivalence Checker has to consider 2I+S permutations to the fan-in of
such a cone (where I is the number of inputs and S is the number of states).

RTL1

stage 1

stage 2

stage 3

Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Feedback Path

Forwarding Path

RTL2

stage 1

stage 2

stage 3

Feedback Path

Forwarding Path

RTL1

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Inputs
Connected
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Outputs
Compared

XN
O

R
XN

O
R

XN
O

R
XN

O
R

Feedback PathFeedback Path

Forwarding PathForwarding Path

RTL2

stage 1

stage 2

stage 3

Feedback Path

Forwarding Path

RTL2

stage 1

stage 2

stage 3

RTL2

stage 1
stage 1

stage 2
stage 2

stage 3
stage 3

Feedback PathFeedback Path

Forwarding PathForwarding Path

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 14

Figure 9 – Logic Cone for req output

A property can be represented by a sequential cone, as illustrated by Figure 10 below. For the
property in Figure 10 there are 3 copies of the logic cone for the req output (for the 3 timesteps
in the property). Inputs and internal states that fan-in to each cone can differ, which increases the
complexity of the proof. Figure 10 is in fact a simplified view, as a sequential proof will also
need to consider additional cones – those driving the state points. Complexity increases with the
length of the property i.e. number of clock cycles, and in the proof method used e.g. prove_rst10
will add at least another 10 cycles to the start of the property (more if the reset sequence needs a
number of cycles to reset all possible DFFs).

Figure 10 - Sequential Cone for the Property P: req ##1 ack |-> ##1 ~req

Sequential proofs are much more complex than combinatorial proofs, as illustrated by Figure 9
and Figure 10, and typically only applied at the block level. An amusing way to help remember
this difference is: “A combinatorial proof only needs to consider cones but a sequential proof
needs to consider the entire Christmas tree!”

Sequential proofs can have even greater sequential depths than the property itself, e.g. an
inductive step adds an extra cycle because it’s proving: P |-> ##1 P.

Output
Logic

In

St

reqOutput
Logic

In

StSt

req

req@t=1

In

St

req@t+1

In

St

ack@t+1=1

req@t+2=0

In

St

Preq@t=1

In

St

req@t=1

In

StSt

req@t+1

In

St

ack@t+1=1

req@t+1

In

StSt

ack@t+1=1

req@t+2=0

In

St

req@t+2=0

In

St

req@t+2=0

In

StSt

P

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 15

3.3.2 How Big is Exhaustive?

The complexity of verification that formal methods can cope with is staggering, and this section
aims to help the reader quantify this complexity. Consider simulating a typical CPU design:

• 500k gates, 20k DFFs, 500 inputs
• 70 billion simulation cycles, running on 200 linux boxes for a week
• How big: 236 cycles

Consider exhaustively verifying the entire design:

• Input sequences: 2(inputs+state) = 220500 cycles
• What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
• How big: 220500 cycles (215000 combinations of X is not significant here!)

That’s a big number! So big in fact that it’s hard to visualize unless given with some context:

• Cycles to simulate the 500k design: 236 (70 billion simulation cycles)
• Cycles to exhaustively verify 32-bit adder: 264 (18 billion billion)
• Number of stars in universe: 270 (1021)
• Number of atoms in the universe: 2260 (1078)
• Possible X combinations in 500k design: 215000 (104515 x 3)
• Cycles to exhaustively verify 500k design: 220500 (106171)

So, to say that formal verification is astronomical would not be an exaggeration – it would in fact
be an understatement.

3.3.3 Increasing Capacity and Speed

It is possible to increase the capacity and speed of sequential comparisons in a number of ways
including:

• Hierarchical Comparison: A divide-and-conquer approach where smaller blocks are
verified before the modules that instance them. This is equally applicable to Logical
Equivalence Checkers but is not usually required.

• Hybrid Logical/Sequential: Two designs will typically differ sequentially by only a

small amount – the majority of the comparison can be done combinatorially as per
existing LEC tools. One approach would be to first try and logically compare matching
DFFs and remove any that differ (leaving the others in the following sequential
comparison.

3.4 Commercial Tools

As described above, some LEC tools (including Cadence Conformal and Synopsys Formality)
provide some limited support for sequential changes to a design. Up until recently there were no
commercial tools that explicitly offered full sequential equivalence checking, but such a tool is

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 16

now available from a company called Calypto. In addition to providing RTL vs. RTL
comparisons, Calypto allows SystemC vs. RTL comparisons.

Of course, it’s also possible to apply the sequential comparisons described in this paper on a
number of commercially available property checkers including:

• Averant’s Solidify
• Cadence’s Static Verifier
• Jasper Design Automation’s Jasper-Gold
• Mentor’s 0-In Confirm
• Synopsys’ Magellan

4.0 Sequential Comparison for X-Analysis
This section describes how sequential equivalence checking can be used to find out which X’s
are dangerous.

4.1 Problems with X

There are different semantics of X, which can be described as follows:

• Simulation semantics of X as “unknown”. Can give optimistic and pessimistic results.
• Synthesis semantics of X as “don’t-care”, allowing it to be minimized.
• 2-State Sequential semantics of X can be either 0 or 1 (modeled by some formal tools)

The fact that there are different semantics compromises the results of RTL simulation and
Logical Equivalence Checking, as described in reference [Turpin 2003] - which gave some
automated property checking techniques for finding potentially dangerous X’s from two sources:

• X-assignments that are reachable
• X-storage in non-reset DFFs

However, it’s not always clear if reachable X’s are dangerous. [Turpin 2003] argued that even a
reachable X might be safe if it’s not read when it is at X (e.g. an X stored in a DFF is safe if it’s
never read). Distinguishing reachable-but-safe X’s can be very difficult.

4.2 2-State Sequential Semantics of X

Formal tools do not have to adhere to the semantics of X in RTL Verilog, as described in [IEEE
95], but can instead fail the verification by stressing the design with X=0 and X=1 settings for
every X (a much better representation of any possible silicon). Unlike Logical Equivalence
Checkers, formal property checkers consider the sequential behavior of a design – allowing them
to track possible values of X’s through internal registers. This is termed 2-State Sequential in
this paper (and in [Turpin 2003]), but can also be thought of as the Silicon Semantics of X as it’s
a better reflection of what Silicon would actually do (at least from a static viewpoint).

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 17

Strict 2-State Sequential semantics can be performed by many formal property checkers
including those described in section 3.4 (although Synopsys’ Magellan also considers Unknown
simulation semantics via VCS)

A formal property checker that supports 2-State Sequential semantics is a powerful analysis tool
for finding X-related problems in RTL, particularly if it has such checks in an automated form.
Note that some property checkers may support 2-State Sequential but actually use Unknown or
Don’t-Care semantics as default, which are faster but could miss X-related bugs.

The rest of this section assumes that the property checker being used for sequential comparison
is using 2-State Sequential semantics of X.

4.3 Sequential Comparison of a Design with itself!

There are some built-in sanity checks in ARM’s seq_compare script to avoid inadvertently
comparing the exact same design twice, either the same file location or an exact copy. However,
sequentially comparing a design with itself is not a waste of time as it can show a difference if:

• An X-assignment can affect an output
• An X stored in a non-reset DFF can affect an output

Comparing a design with itself would pass in unix diff. It would also pass in a Logical
Equivalence Checker which considers both 0 and 1 values of every X but, crucially, matches
pairs of X’s in the two designs and ties them together. Note that Formality does not match pairs
of X-assignments (it treats them as separate unknowns), but it does match DFFs (which can store
Xs, e.g. on power-up).

Comparing a design with itself would not necessarily pass in a sequential comparison as the
DFFs (and X-assignments) are not matched and so the X can be 0 in one copy and 1 in the other.
This approach is illustrated in Figure 11 below. The X’s themselves can be from X-assignments
in the logic cones driving the DFF, or from X’s in non-reset DFFs (e.g. during reset). The formal
property checker will try every combination of X, differently in each design copy, to show a
non-equivalent output.

Sequential equivalence checking provides a simple and elegant solution to finding dangerous
X’s, as it can determine if potentially dangerous X’s can affect the block’s outputs. Conversely,
it can be used to increase the number of non-dangerous X’s in order to produce an optimal
design (X assignments for synthesis don’t-cares and smaller non-reset DFFs).

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 18

4.3.1 Usage

ARM’s seq_compare script is run for X-analysis as follows:

 seq_compare -x RTL1.v

The -x flag will override the sanity-checks and do a formal comparison of RTL1 with itself. The
formal property checker will try every combination of X differently in each design copy, to show
a non-equivalent output.

Figure 11 - Sequentially Comparing a Design with Itself for X-Analysis

This comparison is illustrated in Figure 11above. As DFFs (and X-assignments) are not matched,
a property checker is free to choose different values of X to fail an equivalent output assertion.

4.3.2 Additional Bug Hunting

If your comparison has a number of partial proofs, e.g. proven for 50 cycles from reset but no
further (due to timeouts) then you can try bug-hunting by setting all X-assignments to 0 (and
resetting all non-reset DFFs to 0) in one copy and to 1 in the other. A pass on such a mapping is
non-exhaustive, but a failure is real.

Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

RTL1 (identical copy)

state

n/s o/p

RTL1 (original)

state

n/s o/p
X=0

X=1

X=1

X=0

Inputs
Connected
Inputs
Connected

Outputs
Compared

XN
O

R
XN

O
R

Outputs
Compared

XN
O

R
XN

O
R

XN
O

R
XN

O
R

RTL1 (identical copy)

state

n/s o/p

RTL1 (identical copy)

state
state

n/sn/sn/s o/po/po/p

RTL1 (original)

state

n/s o/p

RTL1 (original)

state
state

n/sn/sn/s o/po/po/p
X=0

X=1

X=0

X=1

X=1

X=0

X=1

X=0

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 19

4.4 Debugging Non-Equivalent Outputs

This section describes some techniques to debug non-equivalent outputs for a sequential
comparison of a design with itself.

4.4.1 Identifying Reachable and Deadcode X-assignments

[Turpin 2003] describes some automated property checking techniques that tell you which X’s
are deadcode (i.e. unreachable) and which are reachable. Any X-assignments reported as
deadcode can be left in the design (to improve minimization during synthesis). Any X-
assignments that are reported as reachable are potential reasons why the design is not equivalent
to itself – removing them could make more outputs equivalent.

4.4.2 Identifying Reset and Non-Reset DFFs

[Turpin 2003] describes an automated property checking technique that tells you which DFFs are
not reset – each one a potential source of a dangerous X. Recently this has been improved by a
new technique that provides information about:

1. Which DFFs are not reset (potential source of X).
2. Which DFFs are reset to 1 (as opposed to 0). Can indicate bugs or one-hot vectors.
3. Which DFFs are directly reset, asynchronously or synchronously.
4. Which DFFs are subsequently reset, due to pipelining from directly reset DFFs.
5. How long the reset should be applied to get all possible resets.

Point 4 above is particularly interesting as it avoids adding reset lines to DFFs that are reset as
part of a pipeline from directly reset DFFs. You just need to ensure that the reset is asserted for
enough cycles to reset all possible DFFs (see point 5 above).

Achieving points 4 and 5 above requires an iterative proof sequence, which can be
computationally expensive as all non-reset DFFs will be tried as the reset depth increases. To
improve efficiency, vector-wide reset proofs are performed as described in Table 1 below (for
asynchronous resets). Half of the proof results in Table 1, the None and All results, are
conclusive for all bits in the vector and proofs for individual DFFs are only required for the
Some results. Using vector-wide reset proofs means that large non-reset datapath registers don’t
take long to prove. Another efficiency is that at the start of each reset depth (required for point 5
above) a vector is created for all remaining DFFs, so on the last step only two proofs are
performed (showing that no remaining DFFs can be reset-to-0 or reset-to-1).

Asynchronous Reset Assertion (in SVA) Proven Failed
~reset_n |-> &(dffs[31:0]) == 1’b0; Some reset-to-0 None reset-to-0
~reset_n |-> &(dffs[31:0]) == 1’b1; All reset-to-1 Some reset-to-0, or

Some still-at-X
~reset_n |-> |(dffs[31:0]) == 1'b0; All reset-to-0 Some reset-to-1, or

Some still-at-X
~reset_n |-> |(dffs[31:0]) == 1'b1; Some reset-to-1 None reset-to-1

Table 1 Vector Wide Proofs

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 20

4.4.3 Examining Fan-in that drives the Cone

Given a non-equivalent output, you can examine the fan-in (inputs and state) that drives its cone
of logic – to see which X-assignments and/or non-reset DFFs can affect the cone. The user can
then experiment with removing such X’s and re-running equivalence.

4.4.4 Modified Comparison

Given a data output, e.g. of 64-bits wide, it may be that X’s can occur on this output for certain
clock cycles but should not be X when a valid signal is high. The OVL assertions for comparison
can be modified to factor in this enabling term e.g. using assert_implication.

4.4.5 Matching DFFs for Software Initialization

It might sometimes be necessary to match a small number of non-reset DFFs in order to avoid
failures due to X in the hardware that are prevented by software. Consider the register bank of a
processor, which is not reset as they are datapath registers (so power up with X’s stored in them).
If any instruction was allowed after power up, then a load from a register could be performed
before it has been initialized – causing a difference when comparing the design with itself.
Matching such DFFs is better than forcing them to be reset as it allows all permutations of X to
be checked, with a constraint that they will be the same in both copies of the design being
compared.

5.0 Conclusions and Future Directions
This paper has described how a property checker can be used to perform sequential comparisons.
It has also given some useful applications of this technique, which cannot be compared using
traditional Logical Equivalency Checkers.

This paper has also described a novel solution to the problem of dangerous X semantics, by
sequentially comparing a design with itself! This technique is an improvement to the approaches
described in [Turpin 2003]. It enables designs to be efficiently implemented, with smaller non-
reset DFFs or X-assignments used to improve minimization during synthesis, without
compromising safety. It can also improve the results of formal property checking in general,
which can fail due to X’s in a design.

ARM will continue to use these techniques in its IP, and develop this methodology further
(maybe a hybrid solution of Sequential and Combinatorial comparisons) until they become
widely available in EDA tools.

6.0 Acknowledgements
I would like to thank Mike Bartley, from the SNUG Technical Committee, for doing a great job
of reviewing this paper. From Synopsys I’d like to thank Lisa McIlwain and Phil Moorby for
their comments on this paper, and Dan Benua and Alessandro Fasan for their comments on this
technique. I’d also like to thank Jeremy Sonander from Saros Technology, along with Ramin
Hojati and Adrian Isles from Averant, for their support in implementing the techniques described

Solving Verilog X-issues by Sequentially Comparing a design with itself!

SNUG Boston 2005 Version 1.4, 14th September 2005 21

in this paper. I’d also like to thank several colleagues at ARM for giving feedback on this
technique, in particular Simon Craske and Samin Ishtiaq.

7.0 References
[Bening 99] "A Two-State Methodology for RTL Logic Simulation", Lionel Bening, DAC

1999
[Foster 03] “Semantic Inconsistency and its effect on simulation”, Harry Foster, IEE

Electronics Systems and Software, April/May 2003
[Galbi 02] “RTL X’s – A Treasure Trove of Trouble”, Duane Galbi & Lok Kee Ting, Boston

SNUG 2002
[IEEE 95] “IEEE Standard Hardware Description Language Based on the Verilog Hardware

Description Language”, IEEE Computer Society, IEEE Std 1364-1995

[Turpin 03] “The Dangers of Living with an X (bugs hidden in your Verilog)”, Mike Turpin,
Boston SNUG 2003

