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Abstract 
We show how designs that implement the AMBA protocol specification can be verified 
automatically using Static Functional Verification (SFV) technology. SFV is an approach 
for verifying the correctness of RTL designs by using formal analysis to prove that a 
property holds for a design under all inputs, sequences of inputs and states. This provides 
a level of confidence in the correctness of a design that is unachievable with simulation.  
We show how different AMBA protocol rules can be described using the Property 
Specification Language (PSL). A methodology is also provided that allows these rules to 
be reused across various designs that implement the AMBA protocol specification.  
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Introduction 
The ARM range of 16/32 bit microprocessors lead the embedded microprocessor market 
and the associated AMBA bus protocols have become a popular choice of companies 
designing complex, state of the art, systems on a chip (SoC).  One of the key verification 
tasks in the design of these systems is to ensure that each of the design units in the system 
obeys the interconnecting bus protocol.  Failure to achieve this can result in poor product 
quality, ASIC re-spins, and delayed entry into the market with corresponding loss of 
revenues. Existing protocol checking methods are typically simulation based, require the 
creation of large numbers of test vectors, cannot expose all corner cases (i.e. it is non-
exhaustive), and typically take man months of effort and a large investment in EDA tools.  
 
The purpose of this paper is to show how Static Functional Verification (SFV) 
technology [2] can be used to verify design units that implement the AMBA protocol [3].  
SFV is a technology that allows for verification to be performed exhaustively without the 
need for test-benches or test vectors. 
 
Two traditional problems that keep SFV from entering the main stream are: 
 

• Designers have to write properties (or assertions) to describe expected behavior. 
• Proving properties can be difficult (tool capacity limitations, false negative 

verification results, etc.). 
 
These problems can be addressed by changes in design methodology, as well as 
educating the design community about how to write assertions and use formal tools.  SFV 
tools themselves are improving, becoming easier to use and giving better results that 
increase the exhaustive pass rate of assertions.  
 
There are some constrained tasks where these traditional problems can be overcome. Bus 
protocol compliance checking is particularly well suited to the SFV approach since: 
 

• The behavior to be verified is well defined, allowing a set of standard protocol 
rules to be implemented as assertions. 

• The behavior of the environment is also well defined (avoids proofs failing due to 
interface false negatives). 

• The signals in question will appear on the interface of a block in a format that is 
known in advance. 

• It can typically be checked at the block level and, as a result, does not suffer from 
some of the capacity limitations found in checking properties at the chip level. 

 
All that is required is that the designers understand what portion of the protocol is 
implemented in the design and a mapping between the signal names in the design and 
signal names given in the protocol specification.  
 
We show how a set of AMBA protocol rules, can be translated from English into a 
property language, such as PSL [4]. We then demonstrate how they can be formally 
verified and added to the design verification methodology. Typically, a static tool can 



either prove a property exhaustively (i.e. shows that it is always true), disprove a property 
(i.e. produce an error trace from reset to show how a design violates a property), or 
returns an inconclusive result (cannot prove or disprove the property). For inconclusive 
properties, we show how the protocol rules can be added to the simulation environment 
to validate whether or not the property passes in simulation.   
 
A more detailed introduction to formal methods can be found  in [5,6] and [7] for 
assertion-based verification.  Previous work on writing assertions for the AMBA AHB 
protocol can also be found in [8]. Note that the work presented that paper, however, 
occurs at the transaction layer, tends to be more global in nature and therefore less 
amenable to efficient verification using SFV technology. 
 
 
Static Functional Verification  
Static Functional Verification (SFV) technology is an analysis technique that eliminates 
the need for simulation vectors and can provide a guarantee that certain types of 
behaviors always hold for a design. This is a qualitative difference from what one can get 
in simulation. As a practical matter, verification using simulation is incomplete: the only 
way to show that a design is free of a bug is to exhaustively simulate all possible input 
sequences that may occur after reset. This, of course, is not feasible for even relatively 
small designs: much less the complex, state of the art, mulit-million gate System-on-a-
Chip (SoC) designs that are being developed today.   
 
SFV works by taking synthesizable Verilog or VHDL RTL descriptions, along with a set 
of mathematical properties that describe, in a unambiguous way, how the design is 
suppose to behave. For each property, an SFV tool performs an analysis of the design to 
determine if the property always holds.  Compared to simulation, verification is typically 
fast and most properties can be verified in the order of minutes or hours.   
 
The design specification of the behaviors to be verified can be provided in terms of 
property languages/libraries, such as the Property Specification Language (PSL) [4], 
Open Verification Library (OVL) [9], System Verilog Assertions (SVA) [10] or the 
Hardware Specification Language (HPL) [2]. The properties in this paper will be 
specified in terms of PSL.  Many commercial simulators now have built in support for 
PSL, and thus can be used for both static verification and dynamic verification 
(simulation). PSL properties can be both embedded directly in the RTL description or 
kept in a separate property file. An example PSL property is given below: 

In this examp
the behavior t
the nack sign
 

assert always ( req  -> (next[2]( ack || nack ))); 
le, req, ack and nack are signals in the design. This property specifies 
hat if the req signal is asserted, then in two clock cycles, the ack signal or 
al should also be asserted.  



THE AMBA Bus Protocol Specification  
The AMBA bus protocol specification is an on-chip bus protocol standard that facilitates 
the interconnection of functional blocks and is particularly suitable for implementation of 
SoC designs.  The AMBA-2.0 protocol exists in several flavors: the Advanced High-
performance Bus (AHB), the Advanced System Bus (ASB), and the Advanced Peripheral 
Bus (APB). In this paper, we will be focusing on AHB, but the methodology applies to 
all three. AHB is the high performance version of AMBA that is useful for connecting 
processors to on-chip memories, high performance peripherals, and secondary processors. 
ASB is an alternative to AHB, but is not high performance and APB is optimized 
specifically for low power applications.  Finally, the AHB-Lite protocol is a subset of the 
AHB protocol and is used in design that contain only a single bus master.  
 
The protocol rules are a specification which unambiguously describe the correct AMBA 
protocol as described in the AMBA 2.0 specification document [3]. An example of one of 
the rules is given in Figure 1. 
 
 
 
 
 
 
 
 
 
Each AHB design can contain both master and slave units that can participate in bus 
operations.  The master is able to initiate read and write operations on the bus and the 
slave responds to these operations. The properties in this paper  will address verification 
of the master. However the methodology applies to both master and slave units. In 
addition, AHB supports various data bus width configurations, including 32, 64 and 128-
bit bus widths. The property sets developed can easily be parameterized so that the 
property set developed for a smaller width can easily be extended to a larger one. Note 
that the AMBA protocol also requires a bus arbiter unit to ensure that only one bus 
master can use the bus for transfer operations. Since each implementation may have a 
different arbitration algorithm, each AMBA arbiter implementation may require a unique 
set of properties to be written. Verifying AMBA arbiters is beyond the scope of this 
paper, although arbiters are an ideal application of SFV (can exhaustively prove some 
standard properties e.g. only one requester is granted at a time). 
 
From the perspective of verification, we classify the rules into five types. The protocol 
specification will typically provide compulsory rules, recommended rules and optional 
rules. These are the direct property equivalents of the English language specification as 
given in the example in Figure 1. To ensure that the correct subset of these is applied to 
the design we also need configuration check rules and converse rules. The configuration 
checks are used to demonstrate which optional parts of the AMBA specification are 
implemented in the design. Finally, the converse rules are used to prove which optional 

no_change_when_busy 
BUSY indicates a pause in the transfer. During BUSY 
the address and control signals must reflect the next 
transfer in the burst. 
 

Figure 1. Description of BUSY (AHB 2.0, Section 3.5) 



parts of the specification are not implemented in the design. The number and 
classification of these rules for AHB and AHB-Lite is shown in Table 1 below. 
 

 
Methodology 
Our methodology consists of 5 parts: choosing which block to verify, choosing the subset 
of the protocol rules which should be used for verification, mapping design signals to 
protocol signals, verifying the design, and performing simulation (for failing or 
inconclusive properties).  Each is explained in the following sub-sections. 
 
Choosing the Appropriate Block For Verification 
The first step is determining which block should be used for verification.   

 
 

Protocol # of 
protocol 
rules 

# of  
configuration 
checks 

# of 
converse 
rules 

AHB Master 50 20 30 
AHB Slave 13 4 4 
AHB-Lite Master 33 20 30 
AHB-Lite Slave 8 2 2 

 
Table 1: Number of properties for each subset of the AHB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Example design hierarchy 
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Choosing just the sub-block which implements the bus interface unit can be good because 
it allows for much faster verification run times. For the example design in Figure 2, just 
the AHB interface block could be given to the tool. However this can be problematic 
because the verification tool will then consider all input combinations/sequences – 
including some that may never occur in the environment in which the block is 
instantiated. In the example, the inputs to the AHB interface from Block A and Block B 
are now unrestricted. So although verification will be fast, interface false negatives may 
occur (due to the inputs taking values that are not possible in the context of the complete 
design). Interface false negative problems can be mitigated by specifying assumptions on 
the inputs. These input assumptions (which can be expressed in PSL using the assume 
construct) specify a sub-set of the legal values which can appear at the design inputs. Of 
course, using these assumptions creates a proof obligation at a higher level of the 
hierarchy (i.e. you must eventually prove that the specified input assumptions are 
correct).  
 
Going further up the hierarchy reduces the number of false negatives and the need to 
restrict the AHB interface block’s inputs, since more of the driving logic is now seen by 
the tool. For example, choosing to verify at the level of Block C will reduce the illegal 
inputs the AHB interface receives from Block A and Block B (since they are now 
included). However, inputs of Block A and B are now unrestricted - which may result in 
these blocks generating output patterns which would not occur had Blocks D and E been 
visible. So although the false negatives are reduced, they are not eliminated.  
 
By choosing to run at the top-level of the design, false negatives are minimized but the 
run time is significantly increased (and additional complexities from multiple clock 
domains can occur). The optimum point of attack is design dependant, typically smaller 
designs are best run at the top-level and large designs are best run at the block-level.  
 
At the top-level, all input assumptions should be found in the documentation for the 
device. Entering the assumptions from the documentation is a great way of checking both 
the design and its documentation in one go. 
 
Choosing The Protocol Subset 
The AMBA specification does not require all features of the protocol to be implemented, 
so some portions of the protocol rule set do not have to be verified for a particular design. 
For example, if the master does not initiate a particular class of data transfers, then the 
part of the specification that is involved in that type of transfer does not have to be 
implemented. When protocol rules are omitted because the relevant behavior is believed 
to be absent, it is important to verify that the untested behavior can never happen. A well-
designed protocol verification tool will track these dependencies and automatically try to 
prove the absence of untested functionality. For example, the AHB protocol specification 
allows for BUSY cycles: that is, it allows for a master that has initiated a transfer to insert 
idle time in the middle of the transfer. There are actually 7 protocol rules associated with 
how BUSY cycles are handled. These rules, however, can all be disabled if it can be 
proven that the particular master (under verification) never generates BUSY cycles.  



 
Performing the Signal Mapping 
Once the AMBA protocol rules have been encoded into a set of PSL properties, they can 
then be used to verify different designs that implement the AMBA protocol specification.  
The AMBA protocol specification does not require the names of the signals appearing in 
the design to be named in any particular way, so in order to apply the rules to different 
designs a mapping has to be provided between the signals appearing in the design and the 
signals appearing in the AMBA protocol specification. There are actually 15 signals that 
need to be mapped for an AHB Master.  To make the portability of the property set easier 
from design to design, the PSL properties can be written as named properties that can be 
parameterized (where the formal parameters correspond to the protocol signal names). 
The properties can then be instantiated using the design specific signals.  The complete 
list of protocol signals for each AHB bus master is given in Table 2, along with a brief 
description for each. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the signal mapping, the user also needs to provide the SVF tool with an 
expression that denotes how the design is reset. If only the sub-block that implements the 
AHB protocol is verified in isolation, then that expression is easy: the protocol 
specification only requires that HRESETn be asserted low. However, if the protocol is 
verified at a higher level of the hierarchy, then it may be necessary to specify a more 

Protocol Signal 
Name 

I/O Description 

HCLK input Bus clock 
HGRANT input Bus grant 
HRDATA input Read data bus 
HREADY input Indicates transfer completed 

from Slave 
HRESETn input Bus reset (active low) 
HRESP input Transfer response from Slave. 

Can be: OKAY, ERROR, 
RETRY, or SPLIT. 

HADDR output Address bus 
HBURST output Burst type 
HBUSREQ output Bus request signal 
HLOCK output Indicates locked bus access 
HPROT output Protection control 
HSIZE output Transfer size 
HTRANS output Transfer type. Can be: 

NONSEQ, SEQ, IDLE, or 
BUSY. 

HWDATA output Write data bus 
HWRITE output Indicates a write transfer 

 
Table 2: AMBA AHB Protocol Signal List 



complex reset sequence.  Finally, legal input conditions to the block may also need to be 
specified. This, of course, will be useful for reducing potential false negative problems.  
 
Verifying The Design 
Once the appropriate subset of the protocol rules has been chosen, the next step is to 
actually run the properties in the SVF tool. Results fall into one of three classes: 
 

• Exhaustive: the property is true for all legal input sequences. Even though 
verification is exhaustive, a proof can pass in seconds/minutes rather than 
hours/days. 

• Failed: the property failed from a reachable design state (i.e., N clock cycles from 
reset). An SVF tool should provide a counter example that shows how the design 
can violate the property (such as an input sequence in a VCD file). 

• Inconclusive: the property cannot be shown to exhaustively pass, or fail from a 
reachable design state. Properties in this class might be partially proven e.g. no 
failure for all possible input sequences within N cycles from reset.  

  
 
Verification Fails 
When verification of one of the PSL properties fails, the part of the design being verified 
may violate one or more of the protocol rules. The violation is illustrated with sequence 
of input vectors that reset the design and then go on to make it violate a protocol rule. 
The failure could be due to an actual bug in the design or an interface false negative that 
occurred because some illegal input pattern has been used.  
 
Most interface false negatives occurring in AHB master/slave protocols can be 
systematically eliminated. This is because most AHB inputs to a master will come from a 
slave, and must comply with the AHB protocol rules for a slave. Similarly most inputs to 
a slave will come from a master, and will comply with the AHB protocol rules for the 
master. Hence having developed a set of master rules, a straightforward translation will 
produce a set of slave input assumptions, and visa versa for the master input assumptions. 
With the extra restriction in place, the formal tool may be able to exhaustively prove that 
the design now always works, or may simply return another way of breaking it. Either 
case yields useful information.  
 
Inconclusive Verification 
Inconclusive verification results occur when the SVF tool is unable to prove or disprove 
the property, due to either: 
 

• proof is too complex and the tool has reached some resource limit (CPU 
time/memory).  

• a counter example (starting from reset) cannot be found. 
 



Our experience over a wide range of designs has been that about 5% of AHB protocol 
rules fall into this category. Partial proof results (e.g. could prove a property holds for the 
first 25 cycles from reset) is useful, but not conclusive, information. 
 
Simulation Integration 
For properties that are inconclusive, dynamic (rather than static) verification can be 
employed to gain confidence in design correctness. RTL simulation is typically used to 
partially verify the property from the top level. Indeed, the advantage of writing the 
protocol rules using PSL is that the properties that are written for SFV can be reused in a 
simulation environment (or vice-versa, i.e. bug-hunt with simulation prior to SFV in 
order to remove low-hanging fruit). While simulation can never guarantee the absence of 
a bug, it is good at bug-hunting and passing tests will give some confidence that the 
design is AHB compliant.   
 
Protocol Rule Types and Examples 
Using formal techniques we can find out more about a design than simply a yes/no on the 
question of compliance. As described earlier, there are 5 distinct classes of rules that can 
be usefully applied to a design, with each class revealing a different type of information: 
 

• Compulsory rules to establish compliance. 
• Recommended rules to establish good design practice. 
• Optional rules to verify non-essential functionality. 
• Converse rules to confirm the protocol compliance checker is correctly set up for 

the design being tested and allow confidence in the results.  
• Configuration rules to establish the capabilities of the design being tested. 

 
We will now look at each of these types in more detail and consider an example of each. 
 
Compulsory  
These rules are the first things to be considered when creating a formal compliance test. 
The goal here is to prove the design cannot violate all the required behavior defined by 
the protocol. All the compulsory rules must be run. If any of these rules fail verification, 
then one must assume that the design contains a serious flaw and is likely to either fail 
itself or cause other devices in the system to fail. An example of such a rule is given in 
Figure 3. 
 

no_seq_at_start 
Sequential transfers cannot follow IDLE, since the 
first transfer of any burst must be non-sequential. 
 

Figure 3: No Sequential at start of transfer (see AHB 2.0, Section 3.5) 



 
We can prove this rule in one of two ways. First, if the current cycle (time t) is SEQ, 
then previous cycle (time t-1) cannot be IDLE. The PSL property for this rule is given 
in Figure 4. The temporal operators for the PSL property in the figure – as well as 
throughout the paper - are all with respect to the positive edge of HCLK. Note that the 
figure also contains a timing diagram to illustrate the property: if the conditions (in italics 
+ dotted) occurs then the requirements (in bold) must be proven.  
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tt - 1

HTRANS SEQ! IDLE

no_seq_at_start 

 
 

assert always ((HTRANS==`SEQ) -> (prev(HTRANS)!=`IDLE));
 

Figure 4: Verifying no_seq_at_start using prv() PSL operator. 
other equally valid property would be: if the current cycle is idle, the next cycle cannot 
 sequential. This is shown in Figure 5. 

signs violating this rule lose any possible claim of AHB compliance. 

 

t+1t

HTRANS !SEQ

no_seq_at_start 

IDLE
 

 
assert always ((HTRANS==`IDLE) -> (next(HTRANS)!=`SEQ));
 

Figure 5: Verifying no_seq_at_start using next() PSL operator. 



Recommended 
These rules can establish the design follows accepted good practice. Such 
recommendations might be concerned with minimizing power consumption, improving 
performance, or improving tolerance of the design to erroneous behavior from other 
devices. A failed recommendation means the design could be improved, but it is not a 
breach of the protocol and the design is still compliant: it can still be used and it can be 
expected to work. An example of such a rule is given in Figure 6. 
 

 
For AHB-Lite, we aim to prove this relationship using the property given in Figure 7. 
 

 
Optional 
Most protocols contain some sort of optional functionality. This is most common for bus 
masters, where a number of different types of transfer could potentially be used to 
achieve the same result. The designer of a bus master may choose to omit some 
functionality corresponding to optional parts of the protocol he or she does not intend to 
use without loss of compliance. An example of such a rule is given in Figure 8. 
 
 
 

idle_after_locked 
It is recommended, but not mandatory, that the Master 
inserts an IDLE transfer after any locked sequence to 
provide an opportunity for the arbitration to change 
before commencing another burst of transfers. 
 

Figure 6. IDLE transfers after lock (see AHB 2.0, Section 3.11.5). 

 
 
 
 
 
 
 
 
 
 
 
 
assert always{HMASTLOCK;!HMASTLOCK} |-> {HTRANS==`IDLE};
 

Figure 7: PSL property for verifying rule idle_after_locked. 
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This rule can be proved using the PSL property given in Figure 9. 
 

 
Converse Rules 
Now consider an AHB master that is only intended to perform 32-bit transfers. In this 
case, the rule given in Figure 9 would be redundant and could be disabled. The existence 
of optional rules, however, opens up a hazard with formal compliance checking. Suppose, 
for example, that the align_2byte rule is turned off during compliance checking, 
since the design is only intended to be used for 32-bit transfers. If, however, in some 
unusual circumstance, 16-bit transfers are actually produced by the design, then that 
feature would be used even though it was never verified. Simply switching off the test for 
byte alignment is not enough as it would allow the possibility of a broken design passing. 
To avoid this possibility we need a converse rule for each optional rule. The purpose of a 
converse rule is to prove the optional functionality, whose check has been disabled, is 
genuinely absent. An example the converse of align_2byte is 
no_2byte_transfers, which is shown in Figure 10. 

 

t

HTRANS

HSIZE

HADDR[1:0]

! IDLE

2

0

align_2byte

 
 
 
assert always (((HTRANS!=`IDLE) && (HSIZE==SIZE_16))  
                    -> (HADDR[0]==1'b0)); 

Figure 9: PSL property for align_2byte 

align_2byte 
Transfers of 2 byte words must be to even addresses. 
 

Figure 8: Two byte address alignment (see AHB 2.0, Section 3.6). 



 

 
 
 
 
Configuration Checks 
The final class of rules is not intended to be part of the compliance test at all, although 
they can help with checking the correct configuration of the compliance checker when 
dealing with optional functionality. Configuration checks exist to confirm the engineer’s 
understanding of the type of design being verified and can be used to help reduce the 
possibility that a given design is instantiated in the wrong environment.  
 
As an example, suppose a data retrieval device is being developed which should only 
ever read data from a system. It would be reassuring to the designer if it could  be 
confirmed that the device will never initiate a write transaction. Such a reassurance would 
be good because it provides a guarantee that the device’s presence could not interfere 
with the integrity of the data in any way. The rules given in Figures 11 and 12 could be 
used to clarify such a situation for the designer. For any design, one should pass and one 
should fail.   
 

 

t

HTRANS

HSIZE !SIZE 16

no_2byte_
transfers

NONSEQ

 
 
 
assert always ((HTRANS ==`NONSEQ)->(HSIZE !=`SIZE_16)); 

 
Figure 10: PSL property for converse rule for no_2byte_transfers 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the property in Figure 12 uses a CTL operator to check that there exists a path 
where a write occurs. Currently, most simulators do not support the optional branching 
extensions of PSL.  
 
 
 
 
Conclusions 
The goal of this paper is to introduce the reader to SFV (Static Functional Verification) 
technology and show how it can be used to verify functional blocks that implement bus 
protocols such as AMBA. The primary advantage of SFV is that the design’s 
functionality can be 100% exhaustively proven against a given specification (i.e. it can 
show that a design is bug-free for all legal input combinations/sequences). Dynamic 
verification cannot give such a guarantee: it can only ever claim “no known bugs”. 
 
Most SoC designs today are still only verified dynamically, mainly via RTL simulation of 
the design in a test-bench. Changing to SFV requires a change in methodology on the part 
of the designer and/or verification engineer. This is particularly daunting to engineers 
who have been trained to think in terms of a simulation mindset and have little 
experience in writing properties or assertions. Verifying bus protocols is one verification 
task that can be easily performed using SFV technology  - requiring very little change in 
the methodology and no experience with formal verification. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

assert always ((HTRANS== `NONSEQ) -> (HWRITE==0)); 
 

Figure 11: PSL property for cannot_write rule 

t

HTRANS

HWRITE 0

cannot 
write

NONSEQ

assert EF !(HWRITE==0 && HTRANS==`NONSEQ); 
 

Figure 12: PSL property for can_write 
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