
 else begin

 if (active == 0) begin

 if (req[0] && req[1]

begin

 active <= 1;

 last_0 <= 0;

Property
Analysis

Verification Properties

RTL Design source

Simulation
Monitors

10100110

00100110

10111100

Simulation
Testbenches

Debug
Tracing

 Abuf/ena1;
 Abuf/ack;

Coverage
Reporting

Property Fails

Property Passes

Proof from Reset

t0

grant 0

req 1

a7dout

Solidify

assert always (

 (idle && req &&

 (next always(!req)) &&

 (always(buf_status[1])))

 -> ack || (next(ack)));

signal_A
signal_B
signal_C

t1 t2

0

1 0

1

a7 f0

Solidify
TM

Features

- High-performance engines

- Source-code debugging

- Hierarchical verification

- Memory model generation

- Property code coverage

- Automatic design checks

Languages

- Verilog / VHDL

- SVA, PSL, OVA, OVL

Outputs

- Property analysis results

- Debug tracing & waveforms

- Testbench generation

- Simulation monitor generation

- Coverage reporting

Static Functional Verification

Static functional verification is a unique form of analysis applied to RTL
design descriptions. The strength of this analysis is that it is exhaustive by
nature, and quickly uncovers hidden design flaws and corner cases.

Solidify is the state of the art in static functional verification. The
underlying technology is very mature, having been employed on countless
production designs. Solidify is feature-rich, powerful, and flexible, allows
use by both designers and verification engineers, and adapts easily to any
environment. It offers capabilities for both novice and expert users, and
interfaces to other programs such as simulators and debuggers.

Power-users will appreciate Solidify's ability to input properties written in PSL, SVA, and OVL. Solidify
has the unique ability to write-out properties in any of those languages, helping to preserve verification IP
value if migrating assertion languages. Solidify also includes a host of advanced capabilities such as
constraints handling, assumption processing, hierarchical verification, and supports specific protocol
checking verification components.

Solidify includes a rich set of automatic checks, making it easy to reap the benefits of formal verification.
These can be used on any design, and require no knowledge of formal verification techniques or languages:

 - Deadlock / Livelock - Dead code - Clock crossing
 - Case pragma - Contention - Array bounds
 - Reset propagation - Data stability - Gray code check

Overview

Powerful Tools

Push-button Capabilities

Averant, Inc.
22320 Foothill Blvd., suite 360

Hayward, CA 94541

Tel: 510-881-8881
Fax: 510-881-8886
www.averant.com

Debug Trace highlights

errors in code.

Solidify includes Averant's unique, patented code coverage capability. This technology allows users to
check the property set for a given design to ensure at least minimal coverage of the design. Property
coverage can also be used to optimize regression suites for both static and dynamic verification.

Solidify offers a rich graphical environment with source-code debugging capabilities. Solidify also
supports Tcl-based programming for full batch-type execution.

Patented Technology

Solid Benefits

Flexible Environment

Solidify provides designers and verification engineers with the methodology and technology to use static
functional verification to greatly enhance existing verification flows. The concise and
 comprehensive nature of properties make a static verification environment easier to develop than for
dynamic verification. And the exhaustive nature of formal verification makes it easy to catch both simple
bugs earlier in the design cycle as well as catching subtle bugs and corner cases.

These factors make Solidify a powerful tool to help increase design quality, speed verification, and reduce
costs.

