
1

Using Static Functional Verification
in the Design of a Memory Controller
Winner of Best Paper award,
Design Case category,
System-on-Chip Conference

Mark Ross
Sachidanandan Sambandan

Cisco Systems

2000
System-on-Chip Design Conference

Using Static Functional Verification in the Design of a Memory Controller

2

Abstract

This paper presents a study of verifying a memory controller
using a static functional verification tool. Static functional
verification is a new technology that does not use vectors or
dynamic simulation but analyses the behaviors of a design
by the use of a property language. This paper presents the
design and verification challenges of a controller, and how
static verification was used to debug the design, what
improvements were seen in methodology, and what was
achieved and learned by using a static tool.

Authors/Speakers

Mark Ross

Current Activities

Director of Engineering at Cisco Systems, Inc. developing
high-speed network switches. Email: mark@cisco.com

Background

Previously, he led Hardware Engineering at Granite Systems
which was acquired by Cisco Systems, Inc. Prior to that, he
was the platform architect for the first Ultra-SPARC
workstations at Sun Microsystems, Inc. and was responsible
for RISC workstation development at NeXT Computer, Inc.

Sachidanandan Sambandan

Current Activities

Director of ASIC Engineering, Force10Networks. Email:
sachi@force10networks.com

Background

Until recently, he was Program Manager in the Gigabit
Technology Group at Cisco Systems, Inc. Previously he was
a Design Manager at Intel Corp. where he worked on the
next generation Merced processor and developed a
concurrent ASIC design methodology. Mr. Sambandan has
been awarded 7 patents in the area of IC memories.

3

INTRODUCTION

Slide #1 Using Static Functional Verification

Slide #2 Overview

A shorter time-to-market and the drive to higher quality are
pressures felt by design teams throughout the industry. The
time to verify a design typically consumes over 50% of the
total design time and effort. New verification technologies
for ASIC design are now available as alternatives to vector
simulation that has been in use for many years by design
teams. This paper presents our experience using static
functional verification and how it an alternative or
replacement to vector simulation.

Slide #3 Design Overview

This memory controller (MC) design is used in new high-
speed router products being developed at Cisco Systems. It
is a second generation of an earlier design.

The basic architecture of the controller consists of the
following major blocks:
§ Address Decode Module
§ Memory Core Module
§ Pipeline Control Module
§ Register Module

Slide #4 Memory Controller Block Diagram

REQUEST DATA is a bi-directional I/O bus that is used for
72-bit reads and writes to the memory. The MC returns
Programmed I/O (PIO) read data to the host environment on
this bus. It also provides a CPU interface to read/write of
the MC’s internal registers, and the SRAM. The commands
are provided to the MC on the INSTRUCTION bus to
perform reads and writes.

1

Using Static Functional Verification in
the Design of a Memory Controller

DesignCon2000

Presented by
Mark Ross, Director of Engineering,

Cisco Systems

2

Outline

l Design Overview & Challenges
l Verification Challenges
l Test Plan & Design Flow
l Features of Static Functional Verification (SFV)
l Achieving Functional Closure
l Verification Results using SFV
l Static Coverage Analysis (SCA)
l Conclusions and Summary

3

Design Overview

l Second generation design
l Four major modules were verified

Ø Address decode
Ø Memory core
Ø Pipeline control
Ø Register

4

Memory Controller Block Diagram

Memory Core
Module

Register
Module

Pipeline Control
Module

REQUEST DATA

Memory Interface
ModuleAddress Decode

Module

SRAM

INSTRUCTION 7

72

Using Static Functional Verification in the Design of a Memory Controller

4

Slide #5 Design Challenges

This design presented new challenges for the design team. It
had a number of new features compared to the previous
generation of the MC. The size of the memory to be
controlled was increased by more than 2X. Additional
functionality required significant new logic to be created.
The part also had to be compatible with the previous
generation MC.

The time for creation, verification and tapeout of this design
was scheduled to be 6 months. It was expected that a little
over half the time to tape-out would be taken up with
verification of the design.

Slide #6 Verification Challenges

There are 130 signal pins, and over 2,350 flip-flops for this
part and therefore a large number of states and modes
needed to be verified. To verify correct operation of the
various read and write operations would require a huge set
of simulation vectors. The previous generation MC took 6

months to verify. The new design was two times more
complex due to additional features. An alternative approach
that did not require vector simulation was therefore
attractive.

Slide #7 Organization

The engineering team included two architects (who are the
authors of this paper), two designers and three verification
engineers. One author began using the static verification tool
to assist with block-level verification. As the design work
was completed for each module, the designers began to do
verification work as well. The members of team who wrote
the specific module fixed any bugs that were found. It
should be noted that functional simulation had already been
done for several months before SFV was started.

Slide #8 Tool Flow

The tool suite used was Solidify from HDAC, Inc. for static
functional verification and Synopsys Design Compiler for
synthesis of the design. Other tools used were VCS and

5

Design Challenges

l Size of memory more than doubled
l Significant new logic created
l Compatible with previous generation MC
l Design scheduled to be completed in 6 months

6

Verification Challenges

l Verify in 6 months
l Complexity more than doubled
l 130 signal pins
l 2,350 flip-flops

Ø huge number of possible states to verify
l Testbench setup and simulation execution

7

Organization

Functional
Spec

A

D

B

C E

RTL
Code &
Debug

RTL
Code &
Debug

RTL
Code &
Debug

• 2 architects

• 2 designers

• 3 verification
 engineers

8

Tool Flow
Architecture
Specification

Code
Verilog Design

Static Functional
Verification

Build Testbench
Environment Synthesis

Timing Analysis

Place & Route

Code Tests

Simulate Tests

Examine Results

5

Virsim from Synopsys for simulation and Specman from
Verisity for testbench development.

Slide #9 Testplan

The testplan for the design included running the following
tests:
• verifying the individual blocks
• verify the interfaces between the blocks are correct in

terms of transaction types and in terms of data content
• run complex vector sets on the chip

Doing a good job at the start of testing means fewer bugs
remain to be discovered at the full-chip level by the
verification engineers. Every time a bug falls through to the
next stage in the design cycle, the cost increases by
approximately 10X to find and fix the problem. Using a
static functional verification tool at the block level was ideal
because of its exhaustive analysis and its ability to find bugs
early in the design cycle.

Slide #10 Features of Static Functional Verification

Static verification technology eliminates the need for vectors
and provides an exhaustive analysis that is guaranteed to be
100% correct. Static functional verification verifies an RTL
or gate-level description satisfies a set of properties or
behaviors. The designer writes properties that are based on a
functional specification for the particular block or module
being verified, e.g., does my finite-state-machine (FSM)
only transition to a legal state. The tool then verifies the
property holds.

The properties or behaviors typically verify in a few
seconds. This is contrast to vector based simulation which
requires the setup of test-benches and possibly long analysis
times. An additional benefit in not using vectors is much
faster debugging compared to vector simulation.

Since static functional verification is an exhaustive analysis,
corner cases and unusual operating modes are quickly
exposed for review by the designer.

Slide #11 Writing properties

To use an SFV tool requires training in the writing and use
of the property language. In this particular study the tool
was learned over the course of a week using written tutorial
materials. All in all, the learning curve was very low.

Properties can cover both combinational and sequential
logic.

In the first example, consider a 3X3 multiplier circuit with
inputs X and Y and output Z. The identity relationship can
be written as a simple property: (X==1) => (Y[2:0] ==
Z[2:0]). This means “when X is 1 then Y equals Z.”

Similarly for sequential circuits, events in the future can also
be verified. In the second example, consider an up-down
counter with inputs Reset, Load, counter input Cin, and
counter output Count.

11

Writing Properties

l Combinational
Ø (X==1) => (Y[2:0] == Z[2:0])

l Sequential
Ø (!reset && load) => ('X(count) == cin)

X

Y
Z

3

3

6

8-bit
Counter

CIN

RESET

LOAD

COUNT

CLOCK

10

Features of Static Functional Verification

l Eliminates vectors
l Write properties (expected behaviors)
l Exhaustive analysis finds corner cases
l Typically verifies in seconds

9

Testplan

l Block-based methodolgy
l Verify individual blocks
l Verify interfaces between blocks

Ø Transaction types
Ø Data content

l Run complex tests on the integrated chip

Using Static Functional Verification in the Design of a Memory Controller

6

The synchronous load is verified with the property:
(!Reset && Load) => ('X(Count) == Cin). It
reads “when Reset is not asserted and Load is asserted then
Count takes on the value of Cin in the next cycle.”

The Synchronous reset is verified with the property
Reset => ('X(Count) == 0). It reads “if Reset is
asserted then the value of Count in the next cycle is zero.”

Slide #12 Debugging HDL

Properties are created using the functional specification for
the chip. The behaviors for each block in the design are
derived from the relevant sections in the specification.
Properties can be analyzed individually or as a group. This
allows for quick interactive development of the properties.

Typically, an initial attempt at a property would be analyzed
and the tool would return an exception. If this was due to
normal operation, then those particular conditions could be
excluded from the property. For instance, the tool might
report that the expected behavior might not occur because
the reset signal was asserted. The property would be edited
to remove the reset condition and then re-verified. If the
exception was due to an error in the HDL, then the
appropriate fix is performed.

Verification engineers were also working on the design
using simulation to verify the design. This ensured that the
risk in using a new tool was reduced, and also provided a
measure for how fast bugs were found with the static tool.

Slide #13 Module Verification

Slide #14 Module Verification cont.

The functional specification for the MC is 58 pages long,
with 11 timing diagrams. There were multiple modes that
needed to be verified. The major focus of the static
verification work was on the Pipeline Control and the
Address Decode modules.

The Address Decode module is used for PIO read, PIO
write, and SRAM operations with the host environment. It
has over 90 inputs, 44 outputs, and 65 flip-flops. The
verification of the Address Decode module was done almost
entirely using the SFV tool, because of the large number of
possible conditions that needed to be covered. An
exhaustive analysis would have taken too long using a
vector-based approach. However, some directed simulation
tests were done as well to confirm basic operation. In total,
293 properties were written.

In the Pipeline Control module, all MC output signals to the
host and SRAM are created. There are over 185 inputs, 100

12

Debugging HDL

Enter HDL

Debug HDL with SFV

Run Lint Check

Synthesize

Functional Specification

Properties

Function Verifiedü

13

Module Verification

l Address Decode
Ø 90 inputs and 44 outputs
Ø 65 flip-flops
Ø Too many cases to simulate
Ø Relied on SFV for almost entire verification
Ø 293 properties written

14

Module Verification cont.

l Pipeline Control
Ø 185 inputs, 100 outputs, 279 flip-flops
Ø 222 properties

l MC Core
Ø Very regular datapath
Ø 68 properties

l Register
Ø 73 properties

7

outputs, and 279 flip-flops for this module. Altogether 222
properties were written.

The MC Core Module is a very regular datapath structure.
This block already been analyzed extensively by using
directed simulation tests, so fewer properties were written
compared to the modules mentioned earlier. There were 68
properties written for this block.

The Register Module was also quite regular and only 73
properties were written for it.

Slide #15 Problems Leading to RTL Changes

During the course of the testing, there was one show stopper
problem identified that was not detected by simulation. The
bug related to the control signals that are generated for the
SRAMs. RTL changes were implemented to fix this issue.

There were other problems that were also detected and
include problems with misalignment of register bits, and
addresses to the core, incorrect aliasing, and compatibility
with the previous generation of the MC.

It became clear that SFV could start finding bugs very
quickly with a design.

Slide #16 Return on Effort

Block level testing using SFV progressed in tandem with full
chip verification using testbench simulation. In a number of
cases, bugs that were identified through dynamic simulation
were also identified using SFV. However, the simulation and
testbench effort had started several months prior to the start
of using SFV. We believe that if block level verification
using SFV had commenced before the dynamic simulations
were started, a significant amount of time would have been
saved by flushing out most of the block level issues at the
beginning.

Slide #17 Integration Testing

The testbench simulation environment was used for
integration testing of the MC. The completed test suite took
6 hours to run on a Sun Ultra 60 workstation and consisted
of:
• 45K cycles of random tests
• 6K cycles of directed tests

17

Integration Testing

l 10 weeks of verification
l Test suite

Ø 45K cycles of random tests
Ø 6K cycles of directed tests
Ø 6 hours runtime (Sun Ultra 60)

l Several bugs found and fixed

15

Problems Leading to RTL Changes

l Over 20 bugs found
l Problems included

Ø SRAM control signals
Ø Misaligned register bits
Ø Misalignment of addresses to the core
Ø Incorrect aliasing
Ø Compatibility with previous version of MC

16

Return on Effort

1. Start testbench setup
 and HDL simulation

2. Start SFV

Weeks of Verification

3. Same bugs
 discovered at
 same time

Using Static Functional Verification in the Design of a Memory Controller

8

Approximately 10 weeks were spent to verify operation
before tapeout. Several bugs, were discovered at integration
testing and required fixes to the appropriate modules.

Slide #18 Functional Non-Convergence

When the various blocks in a system are combined, the
verification challenge becomes much greater since many
more lines of RTL code need to be simulated. Bugs found at
this stage are typically due to incomplete verification of the
component blocks, incorrect interface specifications, and
miscommunication between members of the design team.
Once found, edits at the block level are used to fix the
problem. However instead of updating and re-running the
block-level testbenches, the patched block is re-inserted into
the system for further debugging. Often the effort to create
block level testbenches is thrown away, as maintaining
block-level testbenches is not trivial. The danger in not re-
running verification on the blocks is significant. Applying
changes to code often can introduce additional bugs.

Once a change in the design has been introduced, chip or
system level verification continues to find any remaining (or
new) bugs. By avoiding complete verification at the block
level their discovery is postponed until the more difficult and
lengthy system simulation is attempted. Later discovery
leads to more instability at the system-level and delays
achieving confidence that most bugs have been found before
committing the design to silicon. This functional non-
convergence leads to a longer debug cycle, with less
certainty that all design errors have been detected.

The key to achieving functional closure is to perform
exhaustive block-level verification before integration, and
re-verifying any block-level changes during integration-level
testing.

Slide #19 Reverification

Since the design engineers typically do block level
verification themselves, saving their time is critical since
they also need to drive other issues such as timing closure
for the design. When bugs are found, or there are changes in
the RTL for performance or architectural reasons, a tool that
verifies these changes quickly is very desirable.

Static functional verification demonstrated that the effort to
re-verify was low, since only a few properties would be
affected by a design change. This is in contrast to a
simulation approach where vector testbenches would need to
be re-written and re-simulated.

The verification time for each of the properties was typically
only a second. This meant that reverifying a module would
take about 1-2 minutes. Using exhaustive simulation to
verify the modules would have been impossible given the
number of inputs and outputs for each module.

Slide #20 Verification Times

18

Functional Non-Convergence

Incomplete Block
Verification

Integrate block
into system-level

Verify System

Fix Bug

Place & Route

Many
Iterations

19

Module Reverification

l Need to reverify functional behavior
Ø Bug fixes
Ø Performance tuning

l SFV
Ø only a few properties to update
Ø 1-2 minutes to reverify all properties in a module

l Simulation
Ø rewrite testbenches
Ø significant runtime

20

Verification Times

Module Time to
Verify (sec)

Properties
Written

Secs per
Property

Pipeline Control 153 222 0.69
Register 38 73 0.52
MC Core 52 68 0.76
Address Decode 66 293 0.23
Total 309 656 0.47

9

All four blocks in the design were verified in 6 weeks.

How quickly were properties written? It is no surprise the
simpler properties were easier to write. On the average
about 20 properties a day were written. This was a part-time
activity with typically no more than an hour spent each day
writing properties.

The MC Core module was a very regular datapath structure
and had already been verified using directed testing with
simulation. As a consequence an abbreviated set of
properties was written to verify that module.

As the table well shows, the verification of the individual
properties is on average less than a second. This rapid
verification of the behaviors for a design means a designer
starts to find bugs and unexpected behaviors more quickly
and with less effort.

Slide #21 HDL and Property Comparison

This table compares the number of lines of HDL, and the
gates generated by synthesis, to the number of properties
that were written. On average, for every 5 lines of HDL one
property was written. In the case of the Address Decode
module it was just under 2 lines of HDL per property.

We think the effort to write a property is roughly equivalent
to the effort to create a monitor in a testbench environment.

Slide #22 Coverage Report

Coverage analysis determines if any changes in the RTL are
caught by the set of properties for that module. It lists
uncovered signals and reports what percentage is uncovered.
The designer can then write further properties to cover those
portions of the circuit. Since coverage is a separate analysis
it does not impact the runtime for the verification of
properties.

Coverage analysis was not available when this project was
being done. In preparation for this paper, coverage analysis
was applied to each module, to see how well each was
covered by its set of properties.

The Pipeline Control module exhibits the highest level of
coverage with only 18% of the signals involved not covered
by a property. We are interested in seeing how code
coverage will assist in writing properties for future projects.
By using coverage analysis, it is very likely that more bugs
would be discovered earlier.

Slide #23 Improvements in Methodology

23

Improvements in Methodology

l SFV eliminates testbench setup cost
l Exhaustive analysis reveals corner cases
l Reverification is quick with low effort
l Fewer bugs expected at chip-integration
l Frees up simulation and testbench resources for use

at the chip-level

21

HDL and Property Comparison

Module Lines of
Code

No. of
Gates

No. of
Prop.

Code lines per
Property

Pipeline Control 1,185 6.1K 222 5.3
Register 826 4.2K 73 11.3
MC Core 1,136 24.7K 68 16.7
Address Decode 503 5.0K 293 1.7
Total 3,650 40K 656 5.6

22

Coverage Report

Module Lines of
Code

No. of
Signals

Percent
Uncovered

Coverage
Time (sec)

Pipeline Control 1,185 1,265 18.1 9
Register 826 1,857 31.0 2
MC Core 1,136 3,184 63.2 12
Address Decode 503 765 34.8 2
Total 3,650 7,071 43.6% 25

Using Static Functional Verification in the Design of a Memory Controller

10

SFV eliminates the setup cost of a testbench environment, so
engineers can very quickly start and make progress on
verifying their blocks. SFV complements simulation at the
system-level by providing a fast means of verifying
functional behavior of blocks using an exhaustive analysis.
This leads to fewer bugs at system integration. Re-
verification of modules is much easier and faster so block
level quality improves. Since there is less reliance on
simulation & testbenches at the block level, these resources
can be focussed on system simulation.

Slide #24 Module Reuse

One future activity that will be undertaken is using SFV on
critical cores that will be shared with several design teams.
These modules would only need to be verified exhaustively
one time. Other design teams would typically not need to
re-verify the module unless changes were made to the HDL
code. As noted earlier, reverification of a module with SFV
proceeds quickly with little rewrite of the properties. If a
rewrite were necessary, the properties are typically
orthogonal with respect to each other, so only a few of them
would need to change. This lowers the effort to reverify.
Coverage analysis will also be used to ensure that any
changes in the RTL is covered by the property set.

Slide #25 Summary

The experience using static functional verification was very
positive. SFV found bugs more quickly with less effort.
SFV is ideal for module testing, and accelerates functional
closure. SFV is being used with on-going projects and we
are continuing to see more bugs being found with less effort
than using traditional simulation.

Acknowledgements

We would like to thank Graham Bell for his assistance in
preparing this paper.24

Module Reuse

l Reuse critical cores with multiple design teams
l Exhaustive analysis creates solid cores
l Eliminate unnecessary reverification
l Coverage analysis assures all HDL is verified
l Low reverification time and effort for changes

25

Summary

l SFV found bugs more quickly with less effort
l Ideal for module testing
l Accelerates functional closure at integration
l In use with ongoing projects
l SFV will be used for reuse of critical cores

